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Preface

I started writing these notes in 2005 to aid in the teaching of a seismic processing lab
that is part of the courses Seismic Processing GPGN452 (later redesignated GPGN461)
and Advanced Seismic Methods (GPGN561) in the Department of Geophysics, Colorado
School of Mines, Golden, CO.

In October of 2005, Geophysics Department chairman Terry Young asked me if I
would be willing to help teach the Seismic Processing Lab. This was the year following
Ken Larner’s retirement. Terry was teaching the lecture, but decided that the students
should have a practical problem to work on. The choice was between data collected in
the Geophysics Field Camp the previous summer, or a public domain petroleum industry
dataset that was acquired near the Viking Graben in the North Sea. The latter dataset
was brought by Terry from Carnegie Mellon University.

We chose the latter, and decided that the students should produce as their final project
a poster presentation similar to those seen at the SEG annual meeting. Terry seemed to
think that we could just hand the students the SU User’s Manual and the data, and let
them have at it. I felt that more needed to be done to instruct students in the subject
of seismic processing while simultaneously introducing them to the topics of navigating
the Unix operating system, performing some simple shell language programming, and of
course, using Seismic Un*x.

In the years that have elapsed my understanding of the subject of seismic processing
has continued to grow. In each successive semester I have gathered more examples and
figured out how to apply more types of processing techniques to the data.

My vision of the material is that we are replicating the seismic processors’ base ex-
perience, such as a professional might have obtained in the petroleum industry in the
late 1970s. The idea is not to train students in a particular routine of processing, but
to teach them how to think like geophysicists. Because seismic processing techniques
are not exclusively used on petroleum industry data, the title of “Geophysical Image
Processing” was chosen for earlier versions of these notes. The current version is called
”A course in Seismic Data processing.”
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Chapter 1

Seismic Processing Lab- Preliminary
issues

1.1 Motivation for the lab

In the lecture portion of the course GPGN452/561 (now GPGN461/561) (Advanced Seis-
mic Methods/Seismic Processing) the student is given a word, picture, and chalkboard
introduction of the process of seismic data acquisition and the application of a myriad of
processing steps for converting raw seismic data into a scientifically useful picture of the
earth’s subsurface.

This lab is designed to provide students with practical hands-on experience in the
reality of applying seismic processing techniques to synthetic and real data. The course,
however, is not a “training course in seismic processing,” as one might get in an industrial
setting. Rather than training a student to use a particular collection of software tools, I
believe that it is better that the student cultivate a broader understanding of the subject
of seismic processing. I seek also to help students develop some practical skills that will
serve them in a general way, even if they do not go into the field of oil and gas exploration
and development.

Consequently, I make use of freely available open-source software (the Seismic Un*x
package) running on small-scale hardware (Linux-based PCs). Students are also encour-
aged to install the SU software on their own personal (Linux or Mac) PCs, so that they
may work (and play) with the data and with the codes, at their leisure.

Given the limited scale of our available hardware and time, our goal is modest, to
introduce students to seismic data processing through a 2D single-component processing
application.

The intended range of experience is approximately that which a seismic processor of
mid to late 1970s might have experienced on a vastly slower, more expensive, and more
difficult to use processing platform.

Our technology is different from that of the 1970s geophysicist. This section is in-
cluded to help familiarize the student with that technology.
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1.2 Unix and Unix-like operating systems

The Unix operating system (as well as any other Unix-like operating system, which
includes the various forms of Linux, UBUNTU, Free BSD Unix, and Mac OS X) is
commonly used in the exploration seismic community. Consequently, learning aspects
of this operating system is time well spent. Many users may have grown up with a
“point and click” environment (or a “there is an app for that” environment), where a
given program is run via a graphical user interface (GUI) featuring menus and assorted
windows. Certainly there are such software applications in the world of commercial
seismic processing, but none of these are inexpensive, and none give the user access to
the source code of the application.

There is also an “expert user” level of work where such GUI-driven tools do not exist
and programs are run from the commandline of a terminal window or are executed as
part of a processing sequence in a shell script.

In this course we use the open source CWP/SU:Seismic Un*x (called simply Seismic
Un*x or SU) seismic processing and research environment. This software collection was
developed largely at the Colorado School of Mines (CSM) at the Center for Wave Phe-
nomena (CWP), with contributions from users all around the world. The SU software
package is designed to run under any Unix or Unix-like operating system, and is avail-
able as full source code. Students are free to install Linux and SU on their PCs (or use
Unix-like alternatives) and thus have the software as well as the data provided for the
course for home use, during, and beyond the time of the course.

The datasets are also open. The major dataset that I use in the course was put in the
public domain by Mobil corporation in the early 1990s. The student may keep both the
data and the software for his/her own continuing education after the course is finished.

1.2.1 Steep learning curve

The disadvantage that most beginning Unix users face is a steep learning curve owing
to the myriad of commands that comprise Unix and other Unix-like operating systems.
The advantages of software portability and flexibility of applications, as well as superior
networking capability, however, makes Unix more attractive to industry than Microsoft-
based systems for these expert level applications. Indeed, recent versions of the Microsoft
Windows operating system include a “Bash shell” environment, which is really just a
version of UBUNTU Linux running under a virtual machine environment.

While a user in an industrial environment may have a Microsoft-based PC on his
or her desk, the more computationally intensive processing work is done on a Unix-
based system. The largest of these are clusters composed of multi-core, multiprocessor
PC systems. It is not uncommon these days for such systems to have several thousand
“cores,” which is to say sub processors. Thus, massive parallelism is available in the
industry environment.

Because a course in seismic processing is of broad interest and may draw students
with varied backgrounds and varied familiarity with computing systems, these notes begin
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with the basics. The reader familiar with these topics may skip to the next chapter, if
they so desire. Or they may wish to help their fellow students..

1.3 Logging in

As with most computer systems, there is a prompt, usually containing the word ”login”
or the word ”username” that indicates the place where the user types his or her login
name. The user is then prompted for a password. Once logged in on the system, the user
either has a windowed user interface as the default, or initiates such an interface with a
command, such as startx in some installations of Linux, though this latter scenario is
less common today.

If you have trouble logging in, contact your instructor or the IT department of your
institution.

1.4 What is a Shell?

Some of the most difficult and confusing aspects of Unix and Unix-like operating systems
are encountered at the very beginning. The first of these is the notion of a shell. Unix is
an hierarchical operating system that runs a program called the kernel that is is the heart
of the operating system. Everything else consists of programs that are run by the kernel
and which give the user access to the kernel and thus to the hardware of the machine.

The program that allows the user to interface with the computer is called the “working
shell.” The basic level of shell on all Unix systems is called sh, the Bourne shell. Under
all modern UNIX-like systems, this shell is actually an open-source rewritten version
called bash (the Bourne-again shell), but it has an alias that makes it appear to be the
same as the sh that is found on older Unix and Unix-like systems.

The common working shell environment that a user is usually set up to login in under
may be bash (Bash) csh (the C-shell), tcsh (the T-shell, which is a non proprietary
version of csh, ksh (the Korn shell, which is proprietary), or zsh which is an open
source version of Korn shell, or bash. On Linux and Mac OS X systems bash is
the default shell environment.

The user has access to an application called the Terminal in the graphical user
environment, that when launched (usually by double clicking on an icon that looks like a
small video monitor) invokes a window called a terminal window. (The word “terminal”
harks back to an earlier day, when a physical device called a ”terminal,” consisting of a
screen and keyboard (but no mouse), constituted the users’ interface to the computer.)
It is at the prompt on the terminal window that the user has access to a commandline
where Unix commands are typed.

Most “commands” on Unix-like systems are not built in commands in the shell, but
are actually programs that are run under the users’ working shell environment. The shell
commandline prompt is asking the user to input the name of an executable program.
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That program may be a system command, such as a directory (folder) listing, or it may
be a program written by a third party, or by the user him/herself.

1.5 The working environment

In the Unix-like world all filenames, program names, shells, and directory names, as well
as passwords are case sensitive in their input, so please be careful in running the examples
that follow.

If the user types:

$ cd <--- change directory with no argument

^ takes the user to his/her home

(don’t type this dollar sign) directory

the user will change directories to his or her home directory.
In these notes, the $ symbol will represent the commandline prompt. The user does

not type this $. Because there are a large variety of possible prompt characters, or strings
of characters that people use for the prompt, we show here only a single dollar sign $
as a generic commmandline prompt. On your system it might be a %, a >, or some
combination of these with the computer name and or the working directory and/or the
commandline number.

$ echo $SHELL <--- returns the value of the users’

^ working shell environment

type this dollar sign

The command echo $SHELL tells your working shell to return the value that denotes
your working shell environment. In English this command might be translated as “print
the value of the variable SHELL”. In this context the dollar sign $ in front of SHELL
should be translated as “value of”. Thus, ”echo value of SHELL”.

Common possible shells are

/bin/sh <--- the Bourne Shell

/bin/bash <--- the Bourne again Shell

/bin/ksh <--- K-shell

/bin/zsh <--- Z-shell

/bin/csh <--- C-shell

/bin/tcsh <--- T-shell.

The environments sh, bash, ksh, and zsh are similar. I call these the “sh-family.” The
environments csh and tcsh are similar to each other, but have many differences from
the sh-family. We refer to csh and tcsh as the csh-family.

Again, on Linux and Mac OX systems /bin/bash is usually the default working shell
environment.
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1.6 Setting the working environment

Each of these programs have a specific syntax, which can be quite complicated. Each is
a language that allows the user to write programs called “shell scripts.” Thus Unix-like
systems have scripting languages as their basic interface environment. This endows Unix-
like operating systems with vastly more flexibility and power than other operating systems
you may have encountered as point and click environments. Even those environments
may have a shell command structure that the non-expert user is protected by default in
favor of a windowed environment.

Why have such a structure? The answer is that “point and click is not enough.”The
expert user needs to be able provide more complicated instructions to the computer, and
the shell provides the language of those instructions.

With more flexibility and power, there comes more complexity. It is possible to
perform many configuration changes and personalizations to your working environment,
which can enhance your user experience. For these notes we concentrate only on enough
of these to allow you to work effectively on the examples in the text.

1.7 Choice of editor

To edit files on a Unix-like system the user must adopt an editor. The traditional Unix
editor is vi or one of its non-proprietary clones vim (vi-improved), gvim, or elvis. The
vi environment has a steep learning curve making it often unpopular among beginners.
If a person is envisioning working on Unix-like systems a lot, then taking the time to
learn vi is also time well spent. The vi (or a vi clone) editor is the only editor that is
guaranteed to be on all Unix-like systems. All other editors are third-party items that
may have to be added on some systems, sometimes with difficulty.

Similarly there is an editor called emacs that is popular among many users, largely
because it is possible to write programs in the LISP language and implement these within
the emacs environment. There is also a steep learning curve for this language. There
is often substantial configuration required to get emacs working in the way the user
desires.

A third editor is called pico, which comes with a mailer called “pine.” The pico
editor is easy to learn to use, fully menued, and runs in a terminal window. On many
Linux system there is an equivalent editor called “nano”. These editors are useful if you
are remotely logging into a Linux system.

The fourth class of editor consists of the “screen editors.” Popular screen editors
include xedit, nedit, and gedit. There is a windowed interfaced version of emacs called
xemacs that is similar to the first two editors. These are all easy to learn and to use.

Not all editors are the best to use. The user may find that invisible characters are
introduced by some editors, and that there may be issues regarding how wrapped lines
are handled that may cause problems for some applications. These issues are another
incentive for an expert user, such as a Unix system administrator to prefer vi over other
more intuitive editors.
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MOVEMENT (lines - ends at <CR>; sentence - ends at puncuation-space; section - ends at <EOF>)

By Character

By Line

nG to line n

0, $ first, last position on line

^ or _ first non-whitespace char on line

+, - first character on next, prev line

By Screen

^F, ^B scroll foward, back one full screen

^D, ^U scroll forward, back half a screen

^E, ^Y show one more line at bottom, top

L go to the bottom of the screen

z↵↵ position line with cursor at top

z. position line with cursor at middle

z- position line with cursor at

Marking Position on Screen

mp mark current position as p (a..z)

`p move to mark position p

'p move to first non-whitespace on line w/mark p

Miscellaneous Movement

fm forward to character m

Fm backward to character m

tm forward to character before m

Tm backward to character after m

w move to next word (stops at puncuation)

W move to next word (skips punctuation)

b move to previous word (stops at punctuation)

B move to previous word (skips punctuation)

e end of word (puncuation not part of word)

E end of word (punctuation part of word)

), ( next, previous sentence

]], [[ next, previous section

}, { next, previous paragraph

% goto matching parenthesis () {} []

EDITING TEXT

Entering Text

a append after cursor

A or $a append at end of line

i insert before cursor

I or _i insert at beginning of line

o open line below cursor

O open line above cursor

cm change text (m is movement)

Cut, Copy, Paste (Working w/Buffers)

dm delete (m is movement)

dd delete line

D or d$ delete to end of line

x delete char under cursor

X delete char before cursor

ym yank to buffer (m is movement)

yy or Y yank to buffer current line

p paste from buffer after cursor

P paste from buffer before cursor

“bdd cut line into named buffer b (a..z)

“bp paste from named buffer b

Searching and Replacing

/w search forward for w

?w search backward for w

/w/+n search forward for w and move down n lines

n repeat search (forward)

N repeat search (backward)

:s/old/new replace next occurence of old with new

:s/old/new/g replace all occurences on the line

:x,ys/old/new/g replace all ocurrences from line x to y

:%s/old/new/g replace all occurrences in file

:%s/old/new/gc same as above, with confirmation

Miscellaneous

n>m indent n lines (m is movement)

n<m un-indent left n lines (m is movement)

. repeat last command

U undo changes on current line

u undo last command

J join end of line with next line (at <cr>)

:rf insert text from external file f

^G show status

Vi Quick Reference
http://www.sfu.ca/~yzhang/linux

h

j

l

k

hjkl

Figure 1.1: A quick reference for the vi editor.
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The choice of editor is often a highly personal one depending on what the user is
familiar with, or is trying to accomplish. Any of the above mentioned editors, or similar
third party editors likely are sufficient for the purposes of this course.

For this class, if you are not already familiar with vi or some other editor, I would
recommend using gedit or xemacs.

1.8 The Unix directory structure

As with other computing systems, data and programs are contained in “files” and “files”
are contained in “folders.” In Unix and all Unix-like environments “folders” are called
“directories.”

The structure of directories in Unix is that of an upside down tree, with its root at the
top, and its branches—subdirectories and the files they contain—extending downward.
The root directory is called “/” (pronounced “slash”).

While there exist graphical browsers on most Unix-like operating systems, it is more
efficient for users working on the commandline of a terminal window to use a few sim-
ple commands to view and navigate the contents of the directory structure. Some of
these commands are pwd (print working directory), ls (list contents), and cd (change
directory).

Locating yourself on the system

If you type:

$ cd

$ pwd

$ ls

You will see your current working directory location, which is your called your “home
directory.” You should see something like

$ pwd

/home/yourusername

where “yourusername” is your username on the system. Other users likely have their
home directories in

/home

or something similar depending on how your system administrator has set things up. The
command ls (which is short for “list”) will show you the contents of your home directory,
which may consist of files or other subdirectories.

The codes for Seismic Un*x are installed in some system directory path. I assume
that all of the CWP/SU: Seismic Un*x codes are located in

/usr/local/cwp
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This denotes a directory “cwp,” which is the sub directory of a directory called “local,”
which is in turn is a subdirectory of the directory “usr,” that itself is a sub directory of
slash.

Another possiblity is that software will be stored in a location called “opt”. For ex-
ample, your system administrator may have installed the Seismic Unix codes in /opt/cwp

/opt/cwp

It is worthwhile for the user to spend some time learning the layout of his or her
directories. There is a command called

$ df

which shows the hardware devices that constitute the available storage on the users’
machine. A typical output from typing “df”

$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 286G 19G 253G 7% /

none 4.0K 0 4.0K 0% /sys/fs/cgroup

udev 3.9G 4.0K 3.9G 1% /dev

tmpfs 795M 1.1M 794M 1% /run

none 5.0M 0 5.0M 0% /run/lock

none 3.9G 488K 3.9G 1% /run/shm

none 100M 44K 100M 1% /run/user

fermat:/u 2.0T 1.3T 664G 66% /u

fermat:/gpfc 3.0T 1.1T 1.8T 38% /gpfc

isengard:/class 15G 562M 14G 4% /class

isengard:/usr/local/cwp 20G 17G 2.2G 89% /usr/local/cwp

isengard:/scratch 378G 270G 90G 76% /scratch

isengard:/data 99G 52G 42G 56% /data

isengard:/data/cwpscratch 30G 6.9G 22G 25% /data/cwpscratch

Note items in the far left column. Those whose names that begin with “dev” are hardware
devices on the specific computer. The items that begin with a machine name, in this
case “isengard.mines.edu” exist physically on another machine (named “isengard”), but
are remotely mounted as to appear to be on this machine. The second column from
the left shows the total space on the device, the third column shows the amount of space
used, while the fourth shows the amount available, the fifth column shows the usage as
a percentage of space used. Finally the far right column shows the directory where these
devices are mounted.
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In Unix-like environments, devices are mounted in such a way that they appear to
be files or directories. Under Unix-like operating systems, the user sees only a directory
tree, and not individual hardware devices.

If you try editing files in some of these other directories you will find that you likely
may not have permission to read, write, or modify the contents of many those directo-
ries. Unix is a multi-user environment, meaning that from an early day, the notion of
protecting users from each other and from themselves, as well as protecting the operating
system from the users, has been a priority.

In none of these examples have we used a browser, yet there are browsers available
on most Unix systems. There is no fundamental problem with using a browser, with
the exception that you have to take your hands off the keyboard to use the mouse. The
browser will not tell you where you are located within a terminal window. If you must
use a browser, use “column view” rather than “icon view” as there are many levels of
nested directories to navigate.

1.9 Scratch and Data directories

Directories with names such as “scratch” and “data” are often provided with user write
permission so that users may keep temporary files and data files out of their home direc-
tories. Like “scratch paper” a scratch directory is usually for temporary file storage, and
is NOT BACKED UP! Indeed, on any computer system there may be other unbacked up
directories. You need to be aware of which parts of your computer system are backed up
and which are not. Because there are no backups on scratch directories, it is important
for the user to purchase a USB device to back up his or her items from the scratch areas.

Some directories may be physically located on the specific machine were you are
seated and may not be visible on other machines. Because the redundancy of backups
require extra storage, most system administrators restrict the amount of backed up space
to a relatively small area of a computer system. To restrict user access, quotas may be
imposed that will prevent users from using so much space that a single user could fill up a
disk. However, in scratch areas there usually are no such restrictions, so it is preferable to
work in these directories, and save only really important materials in your home directory.

Users should be aware, that administration of scratch directories may not be user
friendly. Using up all of the space on a partition may have dire consequences, in that the
administrator may simply remove items that are too big, or have a policy of removing
items that have not been accessed over a certain period of time. A system administra-
tor may also set up an automated “grim file reaper” to automatically delete materials
that have not been accessed after a period of time. Because files are not always
automatically backed up, and because hardware failures are possible on any
system, it is a good idea for the user to purchase USB storage media and get
in the habit of making personal backups on a regular basis. A less hostile mode
of management is to institute quotas to prevent single users from hogging the available
scratch space.

You may see a scratch directory on any of the machines in your lab, but these are
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different directories, each located on a different hard drive. This can lead to confusion
as a user may copy stuff into a scratch area on one day, and then work on a different
computer on a different day, thinking that their stuff has been removed.

The availability and use of scratch directories is important, because each user has a
quota that limits the amount of space that he or she may use in his/her home directory.

On systems where a scratch directory is provided, that also has write permission, the
user may create his/her personal work area via

(change directory to the scratch area)

$ mkdir yourusername <--- here "yourusername" is the

your user name on the system

Unless otherwise stated, this text will assume that you are conducting further operations
in your personal scratch work area.

1.10 Shell environment variables and path

The working shell is a program that has a configuration that gives the user access to
executable files on the system. Recall that echoing the value of the SHELL variable

$ echo $SHELL <--- returns the value of the users’

working shell environment

tells you what shell program is your working shell environment. There are other envi-
ronmental variables other than SHELL. Again, note that if this command returns one of
the values

/bin/sh

/bin/ksh

/bin/bash

/bin/zsh

then you are working in the SH-family and need to follow instructions for working with
that type of environment. If, on the other hand, the echo $SHELL command returns
one of the values

/bin/csh

/bin/tcsh

then you are working in the CSH-family and need to follow the alternate series of in-
structions given.

In the modern world of Linux, it is quite common for the default shell to be something
called binbash an open-source version of binsh.
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1.10.1 The path or PATH

Another important variable is the “path” or “PATH”. The value of the path (or PATH)
variable tells where the working shell to look for executable files. Usually, executables are
stored in a sub directory “bin” of some directory. Because there may be many software
packages installed on a system, there may be many such locations. If an executable file
is not on the users’ path, then the shell cannot see it.

To find out what paths you can access, which is to say, which executables your shell
can see, type

$ echo $path

or

$ echo $PATH

The result will be a listing, separated by colons “:” of paths or by spaces “ ” to the bin
directories containing executable programs.

1.10.2 The CWPROOT variable

The variable PATH is important, but SHELL and PATH are not the only possible envi-
ronment variable. Often programmers will use an environment variable to give a users’
shell access to some attribute or information regarding a specific piece of software. This
is done because sometimes software packages are of restricted interest.

For SU the path CWPROOT is necessary for running the SU suite of programs. We
need to set this environment variable, and to put the suite of Seismic Un*x programs on
the users’ path.

1.11 Shell configuration files

Because the users’ shell has as an attribute a natural programming language, many
configurations of the shell environment are possible. To find the configuration files for
your operating system, type

$ ls -a <--- show directory listing of all

files and sub directories

$ pwd <--- print working directory

then the user will see a number of files whose names begin with a dot ”.”.
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1.12 Setting up the working environment

One of the most difficult and confusing aspects of working on Unix-like systems is en-
countered right at the beginning. This is the problem of setting up user’s personal
environment. There are two sets of instructions given here. One for the SH-family of
shells (likely the one you are running under) and the other for the CSH-family.

The user may wonder why there are so many different shell environments. Each of
these was considered to be an improvement on the traditional /bin/sh working shell.
Some shell environments were proprietary, others were open source alternatives.

Each of the shell types returned by

echo $SHELL

or

echo $shell

has a different configuration file or set of files.

1.12.1 The SH-family /bin/sh, /bin/bash, /bin/ksh, /bin/zsh

The file of interest has a name of the form “.profile,” or .bashrc,” or possibly a “.bash profile.”
For users running /bin/bash or /bin/sh, the “.bash profile” file is read once by the shell,
but the “.bashrc” file is read every time a window is opened or a shell is invoked. (Or
vice versa, depending on the system. Mac OS X seems to have a strange convention.)
Thus, what is set here influences the users complete environment. The default form of
this file may show a path line similar to

PATH=$PATH:$HOME/bin:.:/usr/local/bin

At the end of your .bashrc and .bash profile place

export CWPROOT=/usr/local/cwp

PATH=$PATH:$HOME/bin:/usr/local/bin:$CWPROOT/bin:.

or alternatively, if the /opt directory is used, something like

export CWPROOT=/opt/seismic-unix

PATH=$PATH:$HOME/bin:/usr/local/bin:$CWPROOT/bin:.

The important part of the path is to append the string

:$CWPROOT/bin:.

on the end of the PATH line.
Probably the best approach is to put the following lines at the bottom of both the

.bashrc and .bash profile file:
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export CWPROOT=/opt/seismic-unix

PATH=$PATH:$CWPROOT/bin:.

using whatever the appropriate path to Seismic Unix exists on your system.
On systems using /bin/ksh the configuration file is called .profile and the instruc-

tions are the same as for /bin/bash, except the changes are made to .profile..
On Mac OsX (Catalina) systems and later, the default shell is /bin/zsh. The instruc-

tions for these systems are the same as for /bin/sh, except that you put the CWPROOT
and PATH lines in a file called .zshrc the syntax is exactly the same as that for bash,
which is to add two lines of this form, but with the appropriate path for your system

export CWPROOT=/opt/seismic-unix

PATH=$PATH:$CWPROOT/bin:.

The user then logs out and logs back in for the changes to take effect. In each case,
the PATH and CWPROOT variables are necessary to be set for the users’ working shell
environment to find the executables of Seismic Un*x.

To see that you have done this correctly, type

$ echo $CWPROOT

$ echo $PATH

and you should see the CWPROOT and PATH values that reflect the changes you made
in the configuration file. configuration file.

1.12.2 The CSH-family /bin/csh, /bin/tcsh

For the CSH-family (tcsh,csh), the configuration files are “.cshrc” and “.login”. To
configure the shell, edit the file .cshrc. Also, the “path” variable is lower case.

You will likely find a line beginning with

set path=(

with entries something like

set path=( /lib ~/bin /usr/bin/X11 /usr/local/bin /bin

/usr/bin . /usr/local/bin /usr/sbin )

Suppose that the Seismic Un*x package is installed in the directory

/usr/local/cwp

on your system.
Then we would add one line above to set the “CWPROOT” environment variable.

And one line below to define the user’s “path”
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setenv CWPROOT /usr/local/cwp

set path=( /lib ~/bin /usr/bin/X11 /usr/local/bin /bin

/usr/bin . /usr/local/bin /usr/sbin )

set path=( $path $CWPROOT/bin )

or alternatively if the codes are installed under /opt

setenv CWPROOT /opt/seismic-unix

set path=( /lib ~/bin /usr/bin/X11 /usr/local/bin /bin

/usr/bin . /usr/local/bin /usr/sbin )

set path=( $path $CWPROOT/bin )

Save the file, and log out and log back in. You will need to log out

completely from the system, not just from particular terminal windows.

When you log back in, and pull up a terminal window, typing

\begin{verbatim}

$ echo $CWPROOT

will yield

/usr/local/cwp

and

$ echo $PATH

will yield

/lib /u/yourusername/bin /usr/bin/X11 /usr/local/bin /bin

/usr/bin . /usr/local/bin /usr/sbin /usr/local/cwp/bin

1.13 Unix help mechanism- Unix man pages

Every program on a Unix or Unix-like system has a system manual page, called a man
page, that gives a terse description of its usage. For example, type:
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$ man ls

$ man cd

$ man df

$ man sh

$ man bash

$ man csh

to see what the system says about these commands. For example:

$ man ls

LS(1) User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options

too.

-a, --all

do not ignore entries starting with .

-A, --almost-all

do not list implied . and ..

--MORE-

The item at the bottom that says –MORE– indicates that the page continues. To see
the rest of the man page for ls is viewed by hitting the space bar. View the Unix man
page for each of the Unix commands you have used so far.

Most Unix commands have options such as the ls -a which allowed you to see files
beginning with dot “.” or ls -l which shows the “long listing” of programs. Remember
to view the Unix man pages of each new Unix command as it is presented.
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Chapter 2

Lab Activity #1 - Getting started
with Unix and SU, introduction to
the Fourier Transform

Figure 2.1: The suplane test pattern.

Any program that has executable permissions and which appears on the users’ PATH
may be run by simply typing its name on the commandline. For example, if you have
set your path correctly, you should be able to do the following

$ suplane | suxwigb &

^ this symbol, the ampersand, indicates that

the program is being run in background

^ the "pipe" symbol

and you should see something like Figure 2.1.
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The commandline itself is the interactive prompt that the shell program is providing
so that you can supply input. The proper input for a commandline is an executable
file, which may be a compiled program or a Unix shell script. The command prompt is
saying, “Type program name here.”

Try running this command with and without the ampersand &. If you run

$ suplane | suxwigb

The plot comes up, but you have to kill the plot window before you can get your com-
mandline back, whereas

$ suplane | suxwigb label1="time (s)" label2="trace number" &

^ vertical axis ^ horizontal axis

allows you to have the plot on the screen, and have the commandline. Note that the
commandline options require spaces between options, but there are no spaces permitted
around the equal signs.

Axis labeling

To make the plot scientifically more useful we may add some axis labeling:

$ suplane | suxwigb title="suplane test pattern"

label1="time (s)" label2="trace number" &

^ Here the command is broken across a line

so it will fit this page of this book.

On your screen it would be typed as one

long line.

to see a test pattern consisting of three intersecting lines in the form of seismic traces.
The data consist of seismic traces with only single values that are nonzero. This is
variable area display in which each place where the trace is positive valued is shaded
black. See Figure 2.2.

Equivalently, you should see the same output by typing

$ suplane > junk.su

$ suxwigb < junk.su title="suplane test pattern"

label1="time (s)" label2="trace number" &

Finally, we often need to have graphical output that can be imported into documents.
In SU we have graphics programs that write output in the PostScript language

$ supswigb < junk.su title="suplane test pattern"

label1="time (s)" label2="trace number" > suplane.eps
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Figure 2.2: The suplane test pattern.
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2.1 Pipe |, redirect in <, redirect out >, and run in

background &

In the commands in the last section we used three symbols that allow files and programs
to send data to each other and to send data between programs. The vertical bar | is
called a “pipe” on all Unix-like systems. Output sent to standard out may be piped from
one program to another program as was done in the example of

$ suplane | suxwigb &

which, in English may be translated as ”run suplane (pipe output to the program)
suxwigb where the & says (run all commands on this line in background).” The pipe
| is a memory buffer with a “read from standard input” for an input and a “write to
standard output” for an output. You can think of this as a kind of plumbing. A stream
of data, much like a stream of water is flowing from the program suplane to the program
suxwigb.

The “greater than” sign > is called “redirect out” and

$ suplane > junk.su

says ”run suplane (writing output to the file) junk.su. The > is a buffer which reads
from standard input and writes to the file whose name is supplied to the right of the
symbol. Think of this as data pouring out of the program suplane into the file junk.su.
The file junk.su then, is like a bucket holding the data.

The “less than” sign < is called “redirect in” and

$ suxwigb < junk.su &

says ”run suxwigb (reading the input from the file ) junk.su (run in background).

• program | program = pipe from program to program

• program > file = pour data from program to file (redirect out)

• program < file = pour data from file to program (redirect in)

• program ... & = run program in background

2.2 Stringing commands together

We may string together programs via pipes (|), and input and output via redirects (>)
and (<). An example is to use the program suspecfx to look at the amplitude spectrum
of the traces in data made with suplane:

$ suplane | suspecfx | suxwigb & --make suplane data, find

the amplitude spectrum,

plot as wiggle traces
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Figure 2.3: a) The suplane test pattern. b) the Fourier transform (time to frequency)
of the suplane test pattern via suspecfx.

Equivalently, we may do

$ suplane > junk.su --make suplane data, write to a file.

$ suspecfx < junk.su > junk1.su --find the amplitude spectrum, write to

a file.

$ suxwigb < junk1.su & -- view the output as wiggle traces.

This does exactly the same thing, in terms of final output as the previous example, with
the exception that here, two files have been created. We might want to save intermediate
files for some purposes, on the other hand, if we only want the final output and storage
is a premium, then we may want to create as few intermediate files as possible.

To be more scientifically useful, we can add axis labeling.

$ suplane | suspecfx | suxwigb label1="Freq. Hz" label1="trace number" &

See Figure 2.3.

2.2.1 More experiments with the 1D Fourier transform

We can make other test patterns to view with the Fourier transform. There is a program
called ”suvibro” which was originally intended to make synthetic Vibroseis1 sweeps. We

1“Vibroseis” was a trade name of Marland Oils (later Conoco). The inspiration for this technique
was the controled source chirp systems used in radar and sonar.
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may view the selfdoc of suvibro by typing the name of the program on the commandline
without any options

$ suvibro

SUVIBRO - Generates a Vibroseis sweep (linear, linear-segment,

dB per Octave, dB per Hertz, T-power)

suvibro [optional parameters] > out_data_file

Optional Parameters:

dt=0.004 time sampling interval

sweep=1 linear sweep

=2 linear-segment

=3 decibel per octave

=4 decibel per hertz

=5 t-power

swconst=0.0 sweep constant (see note)

f1=10.0 sweep frequency at start

f2=60.0 sweep frequency at end

tv=10.0 sweep length

phz=0.0 initial phase (radians=1 default)

radians=1 =0 degrees

fseg=10.0,60.0 frequency segments (see notes)

tseg=0.0,10.0 time segments (see notes)

t1=1.0 length of taper at start (see notes)

t2=1.0 length of taper at end (see notes)

taper=1 linear

=2 sine

=3 cosine

=4 gaussian (+/-3.8)

=5 gaussian (+/-2.0)

Notes:

The default tapers are linear envelopes. To eliminate the

taper, choose t1=t2=0.0.

"swconst" is active only with nonlinear sweeps, i.e. when

sweep=3,4,5.

"tseg" and "fseg" arrays are used when only sweep=2

Sweep is a modulated cosine function.
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The Vibroseis sweep is a controlled source method that introduces an amplitude and
frequency varying signal (a chirp) into the ground permitting seismic energy to be intro-
duced into the subsurface, without drilling holes and setting of explosive charges.

Vibrator sources have become standard in land-based exploration because they are
highly reproduceable, safe, and less expensive than explosives.

2.2.2 Constant frequency sweeps

Our use of suvibro is to generate constant frequency sweeps, which we will combine
to make discrete frequency test datasets, with which we can further explore the Fourier
transform.

For example, let us make 5Hz, 10Hz, 50Hz, and 100Hz, test datasets

$ suvibro f1=5 f2=5 t1=0 t2=0 > 5_hz_no_taper.su

$ suvibro f1=10 f2=10 t1=0 t2=0 > 10_hz_no_taper.su

$ suvibro f1=50 f2=50 t1=0 t2=0 > 50_hz_no_taper.su

$ suvibro f1=100 f2=100 t1=0 t2=0 > 100_hz_no_taper.su

The choice of “no taper” means that instead of ramping up from zero at the beginning
of the trace, and ramping down to zero at the end, the test data start and stop abruptly.

We can look at any of these files with suxwigb :

$ suxwigb < 5_hz_no_taper.su title="5 Hz no taper " label1="time (s)" &

$ suxwigb < 10_hz_no_taper.su title="10 Hz no taper " label1="time (s)" &

$ suxwigb < 50_hz_no_taper.su title="50 Hz no taper " label1="time (s)" &

$ suxwigb < 100_hz_no_taper.su title="100 Hz no taper " label1="time (s)" &

The 5 Hz case should look like a normal cosine wave. The 10, 50, and 100 Hz cases
may look like black rectangles. These need to be resized by simple stretching for the
trace to be visible.

Amplitude spectra

We may look at the amplitude spectra each of these files with suspecfx

$ suspecfx < 5_hz_no_taper.su

| suxwigb title="5 Hz, amplitude spectrum" label1="freq (Hz)" &

$ suspecfx < 10_hz_no_taper.su

| suxwigb title="10 Hz, amplitude spectrum" label1="freq (Hz)" &

$ suspecfx < 50_hz_no_taper.su

| suxwigb title="50 Hz, amplitude spectrum" label1="freq (Hz)" &
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$ suspecfx < 100_hz_no_taper.su

| suxwigb title="100 Hz, amplitude spectrum" label1="freq (Hz)" &

(Note that each of these command sequences is typed as one long line.

They are split across lines here to fit on the page.)

Note that in each case, there is a prominent spike at 5, 10, 50, and 100 Hz, respectively.
There are also hints of ”side lobes”. Notice also, that the side lobes are larger on the 5
Hz signal, in spite of the fact that the higher frequency signals look less ”cosine-like”.
Why does the 5 Hz signal look less sharp in the frequency domain?

Where do the side lobes come from? We can repeat the experiment with tapered
versions of the signal, by simply letting the default tapering time windows of 1 second
stand

$ suvibro f1=5 f2=5 | suspecfx

| suxwigb title="5 Hz, amplitude spectrum" label1="freq (Hz)" &

$ suvibro f1=10 f2=10 | suspecfx

| suxwigb title="10 Hz, amplitude spectrum" label1="freq (Hz)" &

$ suvibro f1=50 f2=50 | suspecfx

| suxwigb title="50 Hz, amplitude spectrum" label1="freq (Hz)" &

$ suvibro f1=100 f2=100 | suspecfx

| suxwigb title="100 Hz, amplitude spectrum" label1="freq (Hz)" &

(Note that each of these command sequences is typed as one long line.

They are split across lines here to fit on the page.)

and compare these with the tapered versions. Which versions look better? In what way
are they better?

Summing constant frequency signals

We can also sum the files using susum

$ susum 5_hz_no_taper.su 10_hz_no_taper.su

| suxwigb title="5 Hz + 10 Hz" label1="freq (Hz)" &

$ susum 5_hz_no_taper.su 10_hz_no_taper.su | suspecfx

| suxwigb title="5 Hz + 10 Hz" label1="freq (Hz)" &

$ susum 10_hz_no_taper.su 50_hz_no_taper.su

| suxwigb title="10 Hz + 50 Hz" label1="time (s)" &

$ susum 10_hz_no_taper.su 50_hz_no_taper.su | suspecfx

| suxwigb title="10 Hz + 50 Hz" label1="time (s)" &

$ susum 10_hz_no_taper.su 50_hz_no_taper.su | suspecfx

| suxwigb title="10 Hz + 50 Hz" label1="freq (Hz)" &

$ susum 5_hz_no_taper.su 100_hz_no_taper.su | suspecfx

| suxwigb title="5 Hz + 100 Hz" label1="time (s)" &
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$ susum 5_hz_no_taper.su 100_hz_no_taper.su | suspecfx

| suxwigb title="5 Hz + 100 Hz" label1="freq (Hz)" &

(Note that each of these command sequences is typed as one long line.

They are split across lines here to fit on the page.)

and compare. When you zoom in on the time domain signals, you can see the constructive
and destructive interference ”beat” phenomenon.

Notice that the amplitude of the 5 Hz signal seems to be smaller than the higher
frequency signals. Why is that?

Adding all four files together

We may add all 4 single frequency test datasets together.

$ susum 5_hz_no_taper.su 10_hz_no_taper.su > 5+10_hz_no_taper.su

$ susum 50_hz_no_taper.su 100_hz_no_taper.su > 50+100_hz_no_taper.su

$ susum 5+10_hz_no_taper.su 50+100_hz_no_taper.su

> 5+10+50+100_hz_no_taper.su

$ suxwigb < 5+10+50+100_hz_no_taper.su

title="5+10+50+100 Hz" label1="time (s)" &

$ suspecfx < 5+10+50+100_hz_no_taper.su

| suxwigb title="5+10+50+100 Hz" label1="freq (Hz)"&

noting again that the higher frequency signals seem to have higher amplitude and are
sharper in the frequency domain. The sizes of the waves are all the same. How is it that
the Fourier domain representation has a different amplitude?

2.2.3 Questions for discussion

• What is the Fourier transform of a function?

• What is an amplitude spectrum?

• Why do the plots of the amplitude spectrum in Figure 2.3 appear as they do?

2.2.4 Some important Fourier Transforms

What is the Fourier transform of

• a spike (a Dirac delta function)?

• a box function?

• cosine?
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• sine?

• a gaussian?

2.2.5 A few slogans

• That which is sharp in one domain is ringing in the other domain.

• Data are convolved with a box function equal to the number of samples.

• That which is smoothly tapered in one domain will be smoothly tapered in the
other domain.

• Tapering suppresses ringing.

2.2.6 The Fast Fourier Transform versus the Discrete Fourier
Transform

Another example of the Fourier transform is the comparison of the FFT (Fast Fourier
Transform) and the ordinary discrete Fourier transform (DFT).

What is a DFT?

If we translate the integral representation of the Fourier Transform

F (ω) =
∫ ∞

0
f(t)eiωt dt (2.2.1)

where f(t) is the time representation of the function and F (ω) is its frequency domain
representation, and i =

√
−1, into a discrete sum over N total samples of the discretized

function form of fn = f(n∆t), we obtain

F (ωn) =
N−1∑
n=0

fn

[
cos(2πωnn

∆t

N
) + i sin(2πωnn

∆t

N
)
]
. (2.2.2)

Here, the complex exponential is written in terms of sines and cosines. We may consider
ωn = n∆ω.

What is an FFT?

The fast Fourier transform (FFT) exploits some of the symmetries in the discrete repre-
sentation of the Fourier Transform to produce faster algorithm by removing redundancy
in the discrete summation.

There are many approaches to making an FFT algorithm. The original2 (Cooley and
Tukey, 1965) based the algorithm on data sizes where the allowable numbers of samples

2Actually Heideman, Johnson, and Burrus (1984) discuss and unpublished manuscript by mathe-
matician Carl Friedrich Gauss written in 1805 that describes an FFT algorithm, predating by two years
Fourier’s original 1807 publication describing what we call the continuous Fourier Transform!
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could only be even powers of 2 in length. Data would be truncated or padded with
zeros to achieve a number of samples that would be a power of two. Today, so-called
“mixed radix” algorithms, such as that of (Temperton, 1991), exploit data lengths that
are the product of powers of ”relatively prime numbers.” Relatively prime numbers are
numbers that share no common factors beyond 1. Such algorithms are preferred over
the 2N algorithms, because less zero padding is required. The FFTs in the Seismic Un*x
package employ a version of Temperton’s algorithm.

Making constant frequency data with suvibro

We can make some constant frequency data with suvibro. The program suvibro is used
to simulate Vibroseis sweeps, but it also may be used to simulate constant frequency
signals. For example

$ suvibro f1=30 f2=30 t1=0 t2=0 tv=100 > 30hz.su

$ suvibro f1=30.1 f2=30.1 t1=0 t2=0 tv=100 > 30.1hz.su

$ suxgraph < 30hz.su &

$ suxgraph < 30.1hz.su &

$ susum 30hz.su 30.1hz.su > sum.su

$ suxgraph < sum.su

generate, respectively 30 Hz and 30.1 Hz cosine waves. Note that these are 100 second
long sweeps, which are quite a bit longer than normal vibroseis sweeps! You might have
to stretch the suxgraph to see the plots properly. The interference between the two
signals has a “beat.”

If we want to show the spectrum of these signals we can use the FFT algorithm

$ sufft < sum.su | suamp mode=amp

| suxgraph label1="Frequency Hz" label2="Spectral Amplitude" &

The program sufft has as its output the complex Fourier transform of the input func-
tion. The program suamp allows the user to generate the amplitude or phase spectrum
(wrapped or unwrapped).

Discrete Fourier Transform

Alternatively the spectrum may be computed via the DFT

$ suslowft < sum.su | suamp mode=amp

| suxgraph label1="Frequency Hz" label2="Spectral Amplitude" &

This will take considerably more time (hence the name) than the FFT version. The extra
call to suamp is necessary because the output from suslowft are the real and imaginary
parts of the Fourier transform output. The amplitude spectrum is the modulus of these
complex numbers.

The corresponding FFT that outputs real and imaginary parts
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$ sufft < sum.su | suamp mode=amp

| suxgraph label1="Frequency Hz"

label2="Spectral Amplitude" &

again, you may need to zoom in to see the spikes clearly.
You can compare the resolution of the FFT representation to the DFT representation.

Which is better?
If we were studying a phenomenon involving two narrowly spaced, constant frequency

signals, the DFT might be a better choice. In either case, we would want a lot of data
to improve frequency resolution.

Feel free to experiment with greater or lesser numbers of samples. Also consider
making the spikes closer together. Clearly for narrow band signal resolution, we want as
much data as possible.

2.3 Unix Quick Reference Cards

The two figures, Fig 2.4 and Fig 2.5 are a Quick Reference cards for some Unix commands
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Figure 2.4: UNIX Quick Reference card p1. From the University References
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Figure 2.5: UNIX Quick Reference card p2.
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Chapter 3

Lab Activity #2 - viewing data

Just as scratch paper is paper that you use temporarily without the plan of saving for
the long term, a “scratch directory” is temporary working space, which is not backed
up and which may be arbitrarily cleared by the system administrator. Each computer
in a typical computer lab may have a directory called /scratch that is provided as a
temporary workspace for users. Your instructor will make arrangements with the IT
department for temporary storage to be made available.

Suppose you need to create your own scratch area in a system directory called
/scratch. You would then do something like this

$ cd /scratch

$ mkdir yourusername

Here “yourusername” is the actual username that you are designated as on this system.
Please feel free to ask for help as you need it. Remember that a “directory” is the same
thing as a “folder.”

The scratch area may be remotely mounted onto your lab systems, so in this case,
your scratch area will be available on any machine in the lab. Or it may be that this
is a subdirectory of your home directory. You might accumulates 10s of gigabytes of
material, so plan carefully.

In computer environments where the directory is locally on the a given computer, you
will have to keep working on the same system. If you change computers, you will have to
transfer the items from your personal scratch area to that new machine. In labs where
the directory is remotely mounted, you may work on any machine that has the directory
mounted.

Remember: /scratch directories are not backed up. If you want to save materials
permanently, it is a good idea to invest in a USB storage device so you can make frequent
backups.

If you are working on your own computer, the scratch area can be any area that is
convenient for you to use. You might simply make the scratch area an area in your home
directory.

$ cd

$ mkdir scratch

44



45

3.0.1 Data image examples

Three small datasets are provided. These are labeled “sonar.su,” “radar.su,” and “seis-
mic.su” and are located in the directory

/scratch/GPGNX61/data

We will pretend that these data examples are “data images,” which is to say these are
examples that require no further processing.

Do the following:

change to your scratch area

$ mkdir Temp1 (this creates the directory Temp1)

$ cd Temp1 (change working directory to Temp1)

$ cp /scratch/GPGNX61/data/Data1/sonar.su .

$ cp /scratch/GPGNX61/data/Data1/radar.su .

^ ^ It is important that there be a space

$ cp /scratch/GPGNX61/data/Data1/seismic.su .

^ This is a literal dot ".", which

means "the current directory"

$ ls ( should show the files sonar.su, radar.su, and seismic.su )

If you are working on your own home computer, you could make the data area any
convenient location under your home directory. For example

$ cd

$ mkdir data

then copy the data directories for the course into your data directory.
For the rest of this document, when you are directed to make “Temp” directories, it

will be assumed that you are putting these in your personal scratch directory, whereever
that is on the system.

3.1 Viewing an SU data file: Wiggle traces and

Image plots

Though we are assuming that the examples sonar.su, seismic.su, and radar.su are
finished products, our mode of presentation of these datasets may change the way we
view them entirely. Proper presentation can enhance features we want to see, suppress
parts of the data that we are less interested in, accentuate signal and suppress noise.
Improper presentation, on the other hand, can take turn the best images into something
that is totally useless.
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3.1.1 Wiggle traces

A common mode of presentation of seismic data is the “wiggle trace.” Such a represen-
tation consists of representing the oscillations of the data as a graph of amplitude as a
function of time, with successive traces plotted side-by-side. Amplitudes of one polarity
(usually positive) are shaded black, where as negative amplitudes are not shaded. This
is called a variable area display.

This mode of presentation was developed by the petroleum industry for large seismic
plotters for sheets of paper several feet on a side, not for the typical A4 or 8-1/2 by 11
inch paper sizes that we use in an office.

Be aware that variable-area presentation introduces a bias in the way we view the
data, accentuating the positive amplitudes. Furthermore, wiggle traces may make dipping
structures appear fatter than they actually are owing to the fact that a trace is a vertical
slice through the data.

In SU we may view a wiggle trace display of data via the program suxwigb. For
example, viewing the sonar.su data as wiggle traces is done by “redirecting in” the data
file into “suxwigb”

$ suxwigb < sonar.su &

^ the ampersand (&) means "run in background"

so you get your command line back

This should look horrible! The problem is that there are 584 wiggle traces, side by
side. Place the cursor on the plot and drag, while holding down the index finger mouse
button. This is called a “rubber band box.” Try grabbing a strip of the data of width
less than 100 traces, by placing the cursor at the top line of the plot, and holding the
index finger mouse button while dragging to the lower right. Zooming in this fashion will
show wiggles. The less on here is that you need a relatively low density of data on your
print medium for wiggle traces.

Place the mouse cursor on the plot, and type ”q” to kill the window.
Try the seismic.su and the radar.su data as wiggle traces via

$ suxwigb < seismic.su &

$ suxwigb < radar.su &

In each case, zoom in on the data until you are able to see the oscillations of the data.

3.1.2 Image plots

The seismic data may be thought of as an array of floating point numerical values, each
representing a seismic amplitude at a specific (t, x) location. A plot consisting of an array
of gray or color dots, with each gray level or color representing the respective value is
called an “image” plot.

If we view An alternative is an image plot:

$ suximage < sonar.su &
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Figure 3.1: Image of sonar.su data (no perc). Only the largest amplitudes are visible.
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This should look better. We usually use image plots for datasets of more than 50 traces.
We use wiggle traces for smaller datasets.

3.2 Greyscale

There are only 256 shades of gray available in this plot. If a single point in the dataset
makes a large spike, then it is possible that most of the 256 shades are used up by that
one amplitude. Therefore scaling amplitudes is often necessary. The simplest processing
of the data is to amplitude truncate (“clip”) the data. (The term “clip” refers to old
time strip chart records, which when amplitudes were too large appeared if someone had
taken scissors and clipped of the tops of the sinusoids of the oscillations.) Try:

$ suximage < sonar.su perc=99 &

$ suximage < sonar.su perc=99 legend=1

The perc=99 passes only those items of the 99th percentile and below in amplitude. (You
may need to look up “percentile” on the Internet.) In other words, it “clips” (amplitude
truncates) the data to remove the top 1 per cent of amplitudes, which might suck up the
majority of shades of gray. Try different values of ”perc” to see what this does.

3.3 Making our plots scientifically meaningful

3.3.1 Gray scale, color scales, and legend=1

To be scientifically useful, which is to say “quantitative” we need to be able to translate
shades of gray (or color scale) into numerical values. This is done via a gray or color bar,
also known as a ”legend”. A “legend” is a scale or other device that allows us to see the
meanings of the graphical convention used on a plot. Try:

$ suximage < sonar.su legend=1 &

This will show a grayscale bar.
There are a number of colorscales available. Place the mouse cursor on the plot and

press “h” you will see that further pressings of “h” will re plot the data in a different
colorscale. Now press “r” a few times. The “h” scales are scales in “hue” and the “r”
scales are in red-green-blue (rgb). It is important to see that the brightest part of each
scale is chosen to emphasize a different amplitude.

With colormapping some parts of the plot may be emphasized at the expense of other
parts. The issue of colormaps often is one of selecting the location of the “bright part”
of the colorbar, versus darker colors. Even perfectly processed data may be rendered
uninterpretable by a poor selection of colormapping. This effect may be seen in Figure 3.4.

Repeat the previous, this time clipping by percentile
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Figure 3.2: Image of sonar.su data with perc=99. Clipping the top 1 percentile of
amplitudes brings up the lower amplitude amplitudes of the plot.
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Figure 3.3: Image of sonar.su data with perc=99 and legend=1.
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Figure 3.4: Comparison of the default, hsv0, hsv2, and hsv7 colormaps. Rendering these
plots in grayscales emphasizes the location of the bright spot in the colorbar.
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Figure 3.5: Image of sonar.su data with perc=99 and legend=1.
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$ suximage < sonar.su legend=1 perc=99 &

The ease at which colorscales are defined, and the fact that there are no real standards
on colorscales, mean that effectively every color plot you encounter requires a colorscale
for you to be able to know what the values mean. Furthermore, some colors ranges are
brighter than others. By moving the bright color to a different part of the amplitude
range, you can totally change the image. This is a source of richness of display, but it is
also a potential source of trouble, if the proper balance of color is not chosen.

3.3.2 Axis labeling

Plots must also have dimensions. Seismic and seismic-like data (such as our radar.su
and sonar are collected at horizontal positions and are data recorded in time. Thus,
completing the picture of the sonar data, we may do

$ suximage < sonar.su legend=1 perc=99 title="Sonar data"

label1="time (s)" label2="trace number" units="amps" &

If we knew the trace increment, which is to say the distance between traces, we would
label the horizontal axis in terms of spatial units, such as cm, m, and km or ft and mi.
In the absence of such specific knowledge, we use the label ”trace number”.

3.4 Display balancing and display gaining

A common data amplitude balancing is to balance the colorscale on the median values in
the data. The “median” is the middle value, meaning that half the values are larger than
the median value and half the data are less than the median value. Thus, the amplitudes
on the traces are normalized by this middle value.

Another possibility is to scale traces by dividing by some constant value. For example
dividing each trace by the square root of the average of the sum of the square of its values,
the so called “root mean squared” (RMS) amplitude.

Yet another possibility is to balance the amplitudes about the median value, which
is what the balmed option does.

Type these commands to see that in SU:

$ sunormalize norm=balmed < sonar.su | suximage legend=1

$ sunormalize norm=balmed < sonar.su | suximage legend=1 perc=99

You may find perc=99 to be useful. You may find that you have to apply an “RMS”
balancing to make the data look a bit more uniform

$ sunormalize norm=balmed < sonar.su |

sunormalize norm=rms | suximage legend=1

$ sunormalize norm=balmed < sonar.su |

sunormalize norm=rms | suximage legend=1 perc=99
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Figure 3.6: Image of sonar.su data with perc=99, legend=1, label1=”time (s)”, and
label2=”trace number”.

Again, these commands are written as one long line, and are broken here to fit on the
page. You may zoom in on regions of the plot you find interesting.

If you put both the median normalized and simple perc=99 files on the screen side-
by-side, there are differences, but these may not be striking differences. The program
suximage has a feature that the user may change colormaps by pressing the “h” key
or the “r” key. Try this and you will see that the selection of the colormap can make
a considerable difference in the appearance of the image. Even with the same data, the
colormap.

For example in Figure 3.8 we see the result of applying median balancing. We might
consider applying sunormalize directly to the seismic data

$ suximage < seismic.su wbox=250 hbox=600 cmap=hsv4 clip=3 title="no median" &

compared with applying the median balancing
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Figure 3.7: Image of sonar.su data with median balancing and perc=99
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$ sunormalize norm=balmed < seismic.su |

suximage wbox=250 hbox=600

cmap=hsv4 clip=3 title="median balancing" &

This result looks bizarre because the traces individually have different median values and
consequently have different ranges of amplitudes. An improved picture may be obtained
by applying an RMS normalization to the traces after they have been median balanced
via,

$ sunormalize norm=balmed < seismic.su | sunormalize norm=rms |

suximage wbox=250 hbox=600

cmap=hsv4 clip=3 title="median balanced" &

In each of these examples, the line is broken to fit on the page. When you type this, the
pipe | follows immediately after the seismic.su.

There are other possibilities. We may consider simply normalizing the data by the
maximum or minimum value, or by some other constant. Furthermore, we have the
question of whether the process be applied trace by trace, or over the whole panel of
data.

3.5 Homework problem #1 - Display gaining. Due

in one week.

Repeat display gaining experiments of the previous section with “radar.su” and “sonar.su”
to see what median balancing, and setting perc=... does to these data.

• Capture representative plots with axes properly labeled. You can use the Linux
screen capture feature, or find another way to capture plots into a file, (such as
by using supsimage to make PostScript plots) Feel free to use different values of
perc and different colormaps than were used in the previous examples. Is median
balancing better? Is it worse? Can you simply change the clip value and get a
better picture?

The OpenOffice (or LibreOffice) Word wordprocessing program is an easy program
to use for this.

• Prepare a report of your results. The report should consist of:

– Your plots (you are telling a story, show only images are relevant to your
story)

– a short paragraph describing what you saw. Think of it as a figure caption.

– a listing of the actual commandlines that you ran to get the plots.

– Not more than 3 pages total!
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Figure 3.8: Comparison of seismic.su with display gaining, with the same data with no
display gaining. Amplitudes are clipped to 3.0 in each case. Notice that different features
are visible depending on gaining.
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– Make sure that your name, the due date, and the assignment number are at
the top of the first page.

• Save your report in the form of a PDF file, and email to your instructor.

3.6 Concluding Remarks

There are many ways of presenting data. Two of the most important questions that
a scientist can ask when seeing a plot are ”What is the meaning of the colorscale or
grayscale of a plot?” and ”What normalization or balancing has been applied to the data
before the plot?” The answers to these questions may be as important as the answer to
the question ”What processing has been applied to these data?”

3.6.1 What do the numbers mean?

The scale divisions seen on the plots in this chapter that have been obtained by running
suximage with legend=1 show numerical values, values that are changed when we
apply display gain. Ultimately, these numbers relate to the voltage recorded from a
transducer (a geophone, hydrophone, or accelerometer). While in theory we should be
able to extract information about the size of the ground displacement in, saymicrometers,
or the pressure field strength in, say megapascals there is little reason to do this. Owing
to detector and source coupling issues, and the fact that data must be gathered quickly,
we really are only interested in relative values.
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Chapter 4

Help features in Seismic Unix

Scientific data processing and manipulation packages usually contain many commands
and options. Seismic Unix is no exception. As with any package there are help features
to help you navigate the collection of programs and modules. The first thing that you
must do with any software package is to locate and learn to use the help features in
the package. Usually these help mechanisms are not very “helpful” to the beginner, but
are really more like quick reference guides for people who are already familiar with the
package.

There are a number of help features in SU; here we will discuss only three.

4.1 The selfdoc

All Seismic Unix programs have the feature that if the name of the program is typed
with no arguments, a self-documentation feature called a selfdoc is listed.

Try:

$ suplane

$ suximage

$ suxwigb

$ sunormalize

For example:

$ suplane

yields

SUPLANE - create common offset data file with up to 3 planes

suplane [optional parameters] >stdout

Optional Parameters:

npl=3 number of planes
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nt=64 number of time samples

ntr=32 number of traces

taper=0 no end-of-plane taper

= 1 taper planes to zero at the end

offset=400 offset

dt=0.004 time sample interval in seconds

...plane 1 ...

dip1=0 dip of plane #1 (ms/trace)

len1= 3*ntr/4 HORIZONTAL extent of plane (traces)

ct1= nt/2 time sample for center pivot

cx1= ntr/2 trace for center pivot

...plane 2 ...

dip2=4 dip of plane #2 (ms/trace)

len2= 3*ntr/4 HORIZONTAL extent of plane (traces)

ct2= nt/2 time sample for center pivot

cx2= ntr/2 trace for center pivot

--More--

As with the Unix man pages, typing the space bar shows the rest of the help page.
Each of these programs has a relatively large number of possible argument set-

tings. The programs “suxwigb” and “suximage” both call programs named, respectively,
“xwigb” and “ximage”. Type:

$ ximage

$ xwigb

All of the settings for “xwigb” and “ximage” apply to “suxwigb” and “suximage.” That
is a lot of settings.

Correspondingly, there are plotting programs that write out PostScript graphics out-
put for plotting

$ supsimage

$ psimage

$ supswigb

$ pswigb

$ supswigp

$ pswigp

The “SU” versions of these programs call the respective programs that do not have
the “su” prefix.

4.2 Finding the names of programs with: suname

SU is big package containing several hundred programs as well as hundreds of library
functions, shell scripts, and associated files. Occasionally we would like to see the total
scope of the package we are working with.
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For an inventory of the SU programs, typing

$ suname

yields

----- CWP Free Programs -----

CWPROOT=/usr/local/cwp

Mains:

In CWPROOT/src/cwp/main:

* CTRLSTRIP - Strip non-graphic characters

* DOWNFORT - change Fortran programs to lower case, preserving strings

* FCAT - fast cat with 1 read per file

* ISATTY - pass on return from isatty(2)

* MAXINTS - Compute maximum and minimum sizes for integer types

* PAUSE - prompt and wait for user signal to continue

* T - time and date for non-military types

* UPFORT - change Fortran programs to upper case, preserving strings

In CWPROOT/src/par/main:

A2B - convert ascii floats to binary

B2A - convert binary floats to ascii

CSHOTPLOT - convert CSHOT data to files for CWP graphers

DZDV - determine depth derivative with respect to the velocity ",

FARITH - File ARITHmetic -- perform simple arithmetic with binary files

FTNSTRIP - convert a file of binary data plus record delimiters created

FTNUNSTRIP - convert C binary floats to Fortran style floats

GRM - Generalized Reciprocal refraction analysis for a single layer

H2B - convert 8 bit hexidecimal floats to binary

--More(3%)--

Hitting the space bar shows the rest of the page. The suname output shows every
library function, shell script, and main program in the package, and may be too much
information for everyday usage.

What is more common is that we might want a bit more information than a selfdoc,
but not a complete listing. This is where the sudoc feature is useful. Typing

$ sudoc NAME

yields the sudoc entry of the program NAME.
For example we might be interested in seeing information about suplane

$ sudoc suplane

and comparing that with the selfdoc for the same program
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$ suplane

As the number of SU programs you come in contact increases, you will find it useful
to continually be referring to the listing from suname.

The sudoc feature is an alternative to Unix man pages. The database of sudocs is
captured from the actual selfdocs in the source code automatically via a shell script, so
these do not go out of step with the actual code, the way a separately written man page
might.

4.3 Lab Activity #3 - Exploring the trace header

structure

You may have noticed that the plotting programs seem to know a lot about the data you
have been viewing. Yet, you have never been asked to give the number of samples per
trace or the number of traces. For example

$ suximage < sonar.su perc=99 &

shows a plot without being told the dimensions of the data.
But how did the program know the number of traces and the number of samples per

trace in the data? The program knows because this, and all other SU programs read
information from a “header” that is present on each seismic trace.

4.3.1 What are the trace header fields-sukeyword?

If you type:

$ sukeyword -o

you will obtain a listing of the file segy.h, which defines the SU trace header format.
The term “segy” is derived from SEG-Y a popular data exchange standard established
by the Society of Exploration Geophysicists (SEG) in 1975, revised in 2005, and revised
again in 2017. The SU trace header is largely the same as that defined for the SEG-Y
format.

The first 240 bytes of each seismic trace in a SEG-Y dataset consist of this trace
header. The data are always uniformly sampled in time, so the “data” portion of the
trace, consisting of amplitude values only, follows immediately after the trace header.
While it may be tempting to think of a seismic section as an “array” of traces, in the
computer, these traces simply follow one after the other.

The part of the listing from sukeyword that is relevant at this point is
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...skipping

typedef struct { /* segy - trace identification header */

int tracl; /* Trace sequence number within line

--numbers continue to increase if the

same line continues across multiple

SEG Y files.

byte# 1-4

*/

int tracr; /* Trace sequence number within SEG Y file

---each file starts with trace sequence

one

byte# 5-8

*/

int fldr; /* Original field record number

byte# 9-12

*/

int tracf; /* Trace number within original field record

byte# 13-16

*/

int ep; /* energy source point number

---Used when more than one record occurs

at the same effective surface location.

byte# 17-20

*/

int cdp; /* Ensemble number (i.e. CDP, CMP, CRP,...)

byte# 21-24

*/

int cdpt; /* trace number within the ensemble

---each ensemble starts with trace number one.

byte# 25-28

*/

short trid; /* trace identification code:

-1 = Other
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0 = Unknown

1 = Seismic data

2 = Dead

3 = Dummy

4 = Time break

5 = Uphole

6 = Sweep

7 = Timing

8 = Water break

9 = Near-field gun signature

10 = Far-field gun signature

11 = Seismic pressure sensor

12 = Multicomponent seismic sensor

- Vertical component

13 = Multicomponent seismic sensor

- Cross-line component

14 = Multicomponent seismic sensor

- in-line component

15 = Rotated multicomponent seismic sensor

- Vertical component

16 = Rotated multicomponent seismic sensor

- Transverse component

17 = Rotated multicomponent seismic sensor

- Radial component

18 = Vibrator reaction mass

19 = Vibrator baseplate

20 = Vibrator estimated ground force

21 = Vibrator reference

22 = Time-velocity pairs

23 ... N = optional use

(maximum N = 32,767)

Following are CWP id flags:

109 = autocorrelation

110 = Fourier transformed - no packing

xr[0],xi[0], ..., xr[N-1],xi[N-1]

111 = Fourier transformed - unpacked Nyquist

xr[0],xi[0],...,xr[N/2],xi[N/2]

112 = Fourier transformed - packed Nyquist

even N:

xr[0],xr[N/2],xr[1],xi[1], ...,

xr[N/2 -1],xi[N/2 -1]
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(note the exceptional second entry)

odd N:

xr[0],xr[(N-1)/2],xr[1],xi[1], ...,

xr[(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2]

(note the exceptional second & last entries)

113 = Complex signal in the time domain

xr[0],xi[0], ..., xr[N-1],xi[N-1]

114 = Fourier transformed - amplitude/phase

a[0],p[0], ..., a[N-1],p[N-1]

115 = Complex time signal - amplitude/phase

a[0],p[0], ..., a[N-1],p[N-1]

116 = Real part of complex trace from 0 to Nyquist

117 = Imag part of complex trace from 0 to Nyquist

118 = Amplitude of complex trace from 0 to Nyquist

119 = Phase of complex trace from 0 to Nyquist

121 = Wavenumber time domain (k-t)

122 = Wavenumber frequency (k-omega)

123 = Envelope of the complex time trace

124 = Phase of the complex time trace

125 = Frequency of the complex time trace

126 = log amplitude

127 = real cepstral domain F(t_c)= invfft[log[fft(F(t)]]

130 = Depth-Range (z-x) traces

201 = Seismic data packed to bytes (by supack1)

202 = Seismic data packed to 2 bytes (by supack2)

byte# 29-30

*/

short nvs; /* Number of vertically summed traces yielding

this trace. (1 is one trace,

2 is two summed traces, etc.)

byte# 31-32

*/

short nhs; /* Number of horizontally summed traces yielding

this trace. (1 is one trace

2 is two summed traces, etc.)

byte# 33-34

*/

short duse; /* Data use:

1 = Production

2 = Test
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byte# 35-36

*/

int offset; /* Distance from the center of the source point

to the center of the receiver group

(negative if opposite to direction in which

the line was shot).

byte# 37-40

*/

int gelev; /* Receiver group elevation from sea level

(all elevations above the Vertical datum are

positive and below are negative).

byte# 41-44

*/

int selev; /* Surface elevation at source.

byte# 45-48

*/

int sdepth; /* Source depth below surface (a positive number).

byte# 49-52

*/

int gdel; /* Datum elevation at receiver group.

byte# 53-56

*/

int sdel; /* Datum elevation at source.

byte# 57-60

*/

int swdep; /* Water depth at source.

byte# 61-64

*/

int gwdep; /* Water depth at receiver group.

byte# 65-68

*/

short scalel; /* Scalar to be applied to the previous 7 entries

to give the real value.

Scalar = 1, +10, +100, +1000, +10000.
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If positive, scalar is used as a multiplier,

if negative, scalar is used as a divisor.

byte# 69-70

*/

short scalco; /* Scalar to be applied to the next 4 entries

to give the real value.

Scalar = 1, +10, +100, +1000, +10000.

If positive, scalar is used as a multiplier,

if negative, scalar is used as a divisor.

byte# 71-72

*/

int sx; /* Source coordinate - X

byte# 73-76

*/

int sy; /* Source coordinate - Y

byte# 77-80

*/

int gx; /* Group coordinate - X

byte# 81-84

*/

int gy; /* Group coordinate - Y

byte# 85-88

*/

short counit; /* Coordinate units: (for previous 4 entries and

for the 7 entries before scalel)

1 = Length (meters or feet)

2 = Seconds of arc

3 = Decimal degrees

4 = Degrees, minutes, seconds (DMS)

In case 2, the X values are longitude and

the Y values are latitude, a positive value designates

the number of seconds east of Greenwich

or north of the equator

In case 4, to encode +-DDDMMSS

counit = +-DDD*10^4 + MM*10^2 + SS,
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with scalco = 1. To encode +-DDDMMSS.ss

counit = +-DDD*10^6 + MM*10^4 + SS*10^2

with scalco = -100.

byte# 89-90

*/

short wevel; /* Weathering velocity.

byte# 91-92

*/

short swevel; /* Subweathering velocity.

byte# 93-94

*/

short sut; /* Uphole time at source in milliseconds.

byte# 95-96

*/

short gut; /* Uphole time at receiver group in milliseconds.

byte# 97-98

*/

short sstat; /* Source static correction in milliseconds.

byte# 99-100

*/

short gstat; /* Group static correction in milliseconds.

byte# 101-102

*/

short tstat; /* Total static applied in milliseconds.

(Zero if no static has been applied.)

byte# 103-104

*/

short laga; /* Lag time A, time in ms between end of 240-

byte trace identification header and time

break, positive if time break occurs after

end of header, time break is defined as

the initiation pulse which maybe recorded

on an auxiliary trace or as otherwise

specified by the recording system

byte# 105-106
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*/

short lagb; /* lag time B, time in ms between the time break

and the initiation time of the energy source,

may be positive or negative

byte# 107-108

*/

short delrt; /* delay recording time, time in ms between

initiation time of energy source and time

when recording of data samples begins

(for deep water work if recording does not

start at zero time)

byte# 109-110

*/

short muts; /* mute time--start

byte# 111-112

*/

short mute; /* mute time--end

byte# 113-114

*/

unsigned short ns; /* number of samples in this trace

byte# 115-116

*/

unsigned short dt; /* sample interval; in micro-seconds

byte# 117-118

*/

short gain; /* gain type of field instruments code:

1 = fixed

2 = binary

3 = floating point

4 ---- N = optional use

byte# 119-120

*/

short igc; /* instrument gain constant

byte# 121-122

*/
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short igi; /* instrument early or initial gain

byte# 123-124

*/

short corr; /* correlated:

1 = no

2 = yes

byte# 125-126

*/

short sfs; /* sweep frequency at start

byte# 127-128

*/

short sfe; /* sweep frequency at end

byte# 129-130

*/

short slen; /* sweep length in ms

byte# 131-132

*/

short styp; /* sweep type code:

1 = linear

2 = cos-squared

3 = other

byte# 133-134

*/

short stas; /* sweep trace length at start in ms

byte# 135-136

*/

short stae; /* sweep trace length at end in ms

byte# 137-138

*/

short tatyp; /* taper type: 1=linear, 2=cos^2, 3=other

byte# 139-140

*/

short afilf; /* alias filter frequency if used
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byte# 141-142

*/

short afils; /* alias filter slope

byte# 143-144

*/

short nofilf; /* notch filter frequency if used

byte# 145-146

*/

short nofils; /* notch filter slope

byte# 147-148

*/

short lcf; /* low cut frequency if used

byte# 149-150

*/

short hcf; /* high cut frequncy if used

byte# 151-152

*/

short lcs; /* low cut slope

byte# 153-154

*/

short hcs; /* high cut slope

byte# 155-156

*/

short year; /* year data recorded

byte# 157-158

*/

short day; /* day of year

byte# 159-160

*/

short hour; /* hour of day (24 hour clock)

byte# 161-162

*/
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short minute; /* minute of hour

byte# 163-164

*/

short sec; /* second of minute

byte# 165-166

*/

short timbas; /* time basis code:

1 = local

2 = GMT

3 = other

byte# 167-168

*/

short trwf; /* trace weighting factor, defined as 1/2^N

volts for the least sigificant bit

byte# 169-170

*/

short grnors; /* geophone group number of roll switch

position one

byte# 171-172

*/

short grnofr; /* geophone group number of trace one within

original field record

byte# 173-174

*/

short grnlof; /* geophone group number of last trace within

original field record

byte# 175-176

*/

short gaps; /* gap size (total number of groups dropped)

byte# 177-178

*/

short otrav; /* overtravel taper code:

1 = down (or behind)

2 = up (or ahead)

byte# 179-180
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*/

------------------------------------------

/* cwp local assignments */

float d1; /* sample spacing for non-seismic data

byte# 181-184

*/

float f1; /* first sample location for non-seismic data

byte# 185-188

*/

float d2; /* sample spacing between traces

byte# 189-192

*/

float f2; /* first trace location

byte# 193-196

*/

float ungpow; /* negative of power used for dynamic

range compression

byte# 197-200

*/

float unscale; /* reciprocal of scaling factor to normalize

range

byte# 201-204

*/

int ntr; /* number of traces

byte# 205-208

*/

short mark; /* mark selected traces

byte# 209-210

*/

short shortpad; /* alignment padding

byte# 211-212

*/
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short unass[14]; /* unassigned--NOTE: last entry causes

a break in the word alignment, if we REALLY

want to maintain 240 bytes, the following

entry should be an odd number of short/UINT2

OR do the insertion above the "mark" keyword

entry

byte# 213-240

*/

#endif

float data[SU_NFLTS];

} segy;

Not all of these header fields get used all of the time. Some headers are more important
than others. The most relevant fields to normal SU usage are the header fields tracl trace
number within a line, tracr trace number within a reel, dt time sampling interval, cdp
common depth (mid) point index, offset source-receiver offset, sx source x position, gx
receiver group x position, sy source y position, gy receiver group y position, and delrt
trace time delay value.

To see the header field ranges on sonar.su, radar.su, and seismic.su type

$ surange < sonar.su

584 traces:

tracl 1 584 (1 - 584)

cdp 1 584 (1 - 584)

muts 75

ns 3000

dt 100

$ surange < radar.su

501 traces:

tracl 1 501 (1 - 501)

tracr 1 501 (1 - 501)

trid 1

ns 463

dt 800

hour 11

minute 3 33 (3 - 33)

sec 0 59 (41 - 7)

$ surange < seismc.su
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801 traces:

tracl 1200 2000 (1200 - 2000)

tracr 67441 115081 (67441 - 115081)

fldr 594 991 (594 - 991)

tracf 1 8 (2 - 2)

ep 700 1100 (700 - 1100)

cdp 1200 2000 (1200 - 2000)

cdpt 1 8 (2 - 2)

trid 1

nhs 57 60 (60 - 60)

gelev -10

selev -6

scalel 1

scalco 1

sx 18212 28212 (18212 - 28212)

gx 15000 25000 (15000 - 25000)

counit 3

mute 48

ns 601

dt 4000

In each case, where four numbers appear, these are the minimum and maximum values
in the header followed by the first and last values in the data panel. Note that when
a header value is 0, the field is simply not shown. So surange shows only the nonzero
header fields.

You may use sukeyword to determine the meaning of any of the header field “key-
words” seen here via

$ sukeyword key

where ”key” is the specific keyword. For example

$ sukeyword tracl

returns

...

int tracl; /* Trace sequence number within line

--numbers continue to increase if the

same line continues across multiple

SEG Y files.

*/

...
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The first field int tells us that this is defined as type “integer” in the header. The short
description is the SEG’s definition for this field. This can be a big deal. Oft times users
will want to define decimal values for the header fields.

Please note that the keyword names we use here are not an industry standard, but are
peculiar to SU. These are an invention of Einar Kjartannson, the author of the original
suite of programs call SY, that later became the basis of the SU package.

4.3.2 Types of data formats

In the world of scientific data there are three basic types of data formats. These are
acquisition, internal, and data exchange formats.

Acquisition formats

An acquisition format is a data format that is natural to, or convenient for a particular
instrument that is recording data. These are usually formats that are dictated by the
available storage and the process by which the instruments collects and digitizes the
data. Such formats often make sense in this usage, but may not be easy to work with in
computer programs. The data may be multiplexed, or may be compressed in some other
fashion.

Examples of seismic acquisition formats include SEG-D, SEG-B, and SEG-2. Each
of these were designed in conjunction with the needs of multichannel seismic acquisition
systems. SEG-D is used for exploration seismic data, the other two are small seismograph
systems. Some data acquisition systems give the user the option of writing out data in
the “SEGY” format. However, in many cases this is not SEGY “by the book” but a
version that is called the DOS SEGY format. DOS SEGY is based loosely on the SEGY
format, but deviates from the official standard.

Internal formats

The term internal may refer to software, or to an organization such as a school or a
company. Internal formats are just that, internal. Data in such a format is not generally
for public consumption or for transport to other systems or exchange, but is a format
that may make it easier for a particular suite of programs to operate. The SU data
format is an internal format. Every commercial seismic package has its internal format.
Such systems would include PROMAX, DISCO, etc.

Some software packages that specialize in GPR or near surface (engineering geo-
physics) applications may expect data to be written in the SEG-2 or SEG-B formats.

Data exchange formats

For data to be shared between companies or other users, yet a third class of data format is
required. Such formats are called data exchange formats. The most popular is SEG-Y,
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though it is possible that data may be distributed in the acquisition formats SEG-D,
SEG-B, or SEG-2.

Any format that is relatively stable may effectively become a data exchange format,
whether or not the originators of that format had this in mind. The SU data format is
treated as a data exchange format by some software developers.

4.4 Concluding Remarks

Every data processing package has help features and internal documentation. None of
these are usually perfect, and all are usually aimed at people who already understand
the package. Look for the help features and demos of a package.

When receiving a dataset, the most important questions that a scientist can ask about
a dataset that he or she receives are: “What is the format of the data?” ”Are the data
uniformly sampled?” For seismic data: “Have the headers been set?” and “What are
ranges of the the header values?”. “Do the header values make sense?”

Note also, that data coming in from the field, frequently requires that the headers be
set in the data. Transferring header information from seismic observers logs into seismic
trace headers is called “setting geometry.” Setting geometry can be one of the biggest
headaches in preparing data for processing.

Vendors may remap the SEG-Y header fields both in terms of the meaning of the
header field and with respect to the data type. Obtaining a “header map” of data when
you obtain seismic data can prevent confusion and save you a lot of work.

When receiving data on tape, remember that “tape reading is more of an art than a
science.” It is best to ask for data in a format you can use, rather than allow someone
else to dictate that format to you.
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Chapter 5

Lab Activity #4 - Depth conversion
of “Data images”

Geophysical imaging, often called “migration” in the seismic context, is an example
of a general topic called “inverse-scattering imaging.” Simply stated, inverse scattering
imaging is the process of “making pictures with echos.” We have all encountered examples
of this in our daily lives.

Our eyes operate by making images of the world around us from scattered light. Med-
ical ultrasound uses the echos of high frequency sound waves to image structures within
the human body. Ultrasound is also used in an industrial setting for non-destructive test-
ing (NDT). Seismic prospectors look for oil using the echos of seismic waves. Earthquake
seismologists determine the internal structure of the deep earth with echos of waves from
earthquakes.

Near surface investigators use the echos of ground penetrating radar waves to image
objects in the shallow subsurface.

5.1 Imaging as the solution to an inverse problem

Acoustic and elastic waves echo off of jumps in the wavespeed and/or the density of the
medium. In the case of electromagnetic scattering, the signal is coming from a volume
of material or a layer, rather than a boundary between layers, which has a differing
conductivity from the surrounding material.

In each case, the propagating wave impinges on the reflector at some angle, and is
reflected from at an angle determined by the law of reflection for the medium. For
scalar waves, which is to say waves that do not experience mode conversion, the angle
of incidence equals the angle of reflection. For elastic waves, the angle of reflection is
a function of the angle of incidence and of the velocities and densities of the media on
either side of the reflector.

The scattered wave therefore carries information about both the orientation of the
reflector and its location. Thus, an image formed from such data is a solution to an
inverse problem wherein the wavespeed of the medium and the location and orientation
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Figure 5.1: Cartoon showing the simple shifting of time to depth. The spatial coordinates
x do not change in the transformation, only the time scale t is stretched to the depth
scale z. Note that vertical relief looks greater in a depth section as compared with a time
section.

of the reflector are the unknown variables for which we are attempting to solve.

5.2 Inverse scattering imaging as time-to-depth

conversion

In geophysics there are three common types of inverse-scattering imaging techniques
that may be encountered. These are “acoustic,” “ground penetrating radar (GPR),” and
“reflection seismic.” Acoustic methods include sonar as well as any other echo imaging
method that employs sound waves in the air or water.

In each case a species of wave is introduced into the subsurface. This wave is reflected
off of structures within the Earth and travels back up to the surface of the Earth where it
is recorded. In the raw form, the coordinates of the data consist of the spatial coordinates
of the recording position and traveltime, which may be represented as the ordered triple
of numbers Data(x1, x2, t).

5.2.1 Migration as a mapping of data from time to space

It is implied that some form of processing is needed to convert data collected in the input
coordinates of space and timeData(x1, x2, t) into an image in the output coordinates that
are purely spatial DepthImage(y1, y2, y3) or are new spatial coordinates and a “migrated
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time coordinate” TimeImage(y1, y2, τ). When the output is in space and migrated time,
we call the process “time migration” and the output a “time section”. When the output
is in purely spatial coordinates, we call the process “depth migration” and the output a
“depth section”. Each type of section is found useful in exploration seismic. We consider
“time migration” as the focusing of the data into an image, and “depth migration” as
focusing combined with depth conversion, in the simplest description.

5.2.2 Migration as focusing followed by depth conversion

Thus, for our “migration as depth conversion” we will consider the final step of processing
as a process that converts the data from Data(y1, y2, τ) to data in DepthImage(y1, y2, y3)
in purely spatial coordinates.

The simplest cases of such processing occur when the output spatial coordinates on
the recording surface are such that y1 = x1 and y2 = x2. Then the remaining problem
is to “trade time for depth”. Often the symbol z is used to represent depth, with z
increasing positively as we go deeper into the earth.

Clearly, special circumstances are needed for this simple case to exist. Effectively,
such an imaging problem is one dimensional. This type of problem may result from the
construction of synthetic well logs from migrated seismic data or making depth sections
from migrated time sections.

Sonar and GPR data usually have the attribute that the same piece of equipment
is used as both source and receiver. Furthermore, this source-receiver array is likely
highly directional, forming a beam of energy that travels straight down into the Earth,
with reflections being recorded by a detector that can only see near vertical arrivals.
For sonar, this works because the scattering occurs from roughness in the structures
(“rough surface scattering”) of the subsurface. Thus we may consider the reflection to
have occurred directly below the receiver, with little energy coming in from angles far
from vertical.

To perform time-depth conversion, we need to know something about the velocities
of the subsurface.

5.3 Time-to-depth with suttoz ; depth-to-time with

suztot

The simplest approach to depth conversion is to use a simple velocity profile expressed
as a function of time v(t). How can we have velocity as a function of time? The idea is
intuitive. We expect the image to show reflectors. These reflectors are the boundaries
between media of different wavespeeds. Given auxiliary information about geology, well
logs or the result of seismic velocity analysis, we expect to be able to relate arrivals on
the seismic section to specific depth horizons, for which, in turn, we have wavespeed
information.
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Figure 5.2: a) Test pattern. b) Test pattern corrected from time to depth. c) Test
pattern corrected back from depth to time section. Note that the curvature seen depth
section indicates a non piecewise-constant v(t). Note that the reconstructed time section
has waveforms that are distorted by repeated sinc interpolation. The sinc interpolation
applied in the depth-to-time calculation has not had an anti-alias filter applied.
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Figure 5.3: a) Cartoon showing an idealized well log. b) Plot of a real well log. A real
well log is not well represented by piecewise constant layers. c) The third plot is a linearly
interpolated velocity profile following the example in the text. This approximation is a
better first-order approximation of a real well log.
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5.4 Time to depth conversion of a test pattern

To see what the problem of time-to-depth and depth-to-time is all about, we may try
suttoz on a test pattern made with suplane

$ suplane > junk.su

$ suttoz < junk.su t=0.0,.15,.2 v=1500,2000,3000 > junk1.su

$ suxwigb < junk.su title="test pattern" &

$ suxwigb < junk1.su title="depth section" &

The program suztot has been provided to apply depth-to-time conversion, as the
inverse of sutotz. Because we know the values of the velocity that were used, we must
try to figure out the depths Z1, Z2, and Z3, necessary to undo the operation

$ suztot < junk1.su z=Z1,Z2,Z3 v=1500,2000,3000 > junk2.su

$ suxwigb < junk2.su title="time section reconstructed" &

Please note, you don’t literally type “z=Z1,Z2,Z3” what you want is to find three numbers
representing depths to substitute in for Z1, Z2, and Z3. The first value Z1 = 0.

You will notice that on the junk1.su data, the picture does not start getting distorted
until after about depth 105. This gives a clue as to the place where the faster speeds
kick in.

You will further notice that the junk2.su data does not look very much like the
junk.su data. The first thing that you should notice is that the original junk.su data
only goes to about .24 seconds, but the junk2.su data goes to more than .5 seconds.

It is a good idea to use surange to see if the header values have been changed by the
processing. The original data shows

$ surange < junk.su

32 traces:

tracl 1 32 (1 - 32)

tracr 1 32 (1 - 32)

offset 400

ns 64

dt 4000

whereas the depth converted data has a greater number of samples

$ surange < junk1.su

32 traces:

tracl 1 32 (1 - 32)

tracr 1 32 (1 - 32)

trid 30

offset 400

ns 126 <------ ns has increased!!!

dt 4000

d1 3.000000

83



84

and finally, the depth-to-time converted data

$ surange < junk2.su

32 traces:

tracl 1 32 (1 - 32)

tracr 1 32 (1 - 32)

offset 400

ns 63 <-------- ns is now 63

dt 4000

shows ns=63, rather than the original ns=64 samples.

5.4.1 How time-depth and depth-time conversion works

The way that this works is simple. Each sample of the data is a function of time. We
have velocities to use for each time value. If the velocity is constant, then the process
of time to depth conversion is more of a relabeling process than a calculation. However,
for situations where the velocity varies as we go to later times in the data, we have to
deal with the fact that the sample spacing of the time-to-depth shifted data changes as
the velocity changes. Indeed, constant or piecewise-constant profiles rarely accurately
represent wavespeed variation in the real earth, so there can be considerable change in
the vertical location of the samples.

The depth is calculated for each sample, but because we want the output to be
uniformly sampled, we have to interpolate the missing depth values. This interpolation
may be done many ways, but in this program it is done by fitting a sinc function (sinc
interpolation) to the data points. (Look up sinc interpolation in a textbook on signal
processing.) The bandwith of this sinc function is the the band from 0 to the Nyquist
frequency of the data. When resampling to a greater number of samples, the Nyquist
frequency of the output is greater than the Nyquist frequency of the input, so there is no
possibility of aliasing. However, if we subsample data, the potential for aliasing exists.

To repeat the test, we should be setting nt=64 to force the number of samples to be
the same on both input and output

$ suplane > junk.su

$ suttoz < junk.su t=0.0,.15,.2 v=1500,2000,3000 > junk1.su

$ suztot < junk1.su nt=64 z=Z1,Z2,Z3 v=1500,2000,3000 > junk2.su

$ suxwigb < junk.su title="test pattern" &

$ suxwigb < junk1.su title="depth section" &

$ suxwigb < junk2.su title="reconstructed time section" &

The time-to-depth may be improved by truncating the additional values

$ suwind itmax=64 < junk1.su | suxwigb title="time to depth" &

where suwind has been used to pass only the first 64 samples of each trace.
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The short answer is that while the time-to-depth and depth-to-time conversions are
ostensibly simply piecewise linear operations in this simple example, there is the potential
for errors that can be introduced by the interpolation process. These errors may make
process of stretching only partially invertible.

5.4.2 How to calculate the depths Z1, Z2, and Z3

The main problem is deciding how the v(t) and v(z) functions are to be interpolated. As
is seen in Fig 5.3 constant step models often seen in cartoon well log diagrams do not
accurately depict the complexity of actual well logs.

The simplest approximation to a real well log is a piecewise continuous curve, with
piecewise linear being the simplest example of such a curve. That is, we assume a
functional form of v(t) = mt + b for velocity as a function of time. Here, m is the slope
of the linear trend given by the ratio of the change in velocity divided by the change in
time, and b would be the beginning velocity of the trend.

For the example of t = 0.0, .15, .2 v = 1500, 2000, 3000 in the region from t = 0.0
to t = .15 the velocity profile would be given by v1(t) = (500/.15)t + 1500. Here the
velocity starts at 1500m/s at the surface, and increases to 2000m/s at time .15s. In
the second region, which begins at t = .15s to t = .2s, the velocity profile is given by
v2(t) = (1000/.05)(t − .15) + 2000. Here the velocity changes by 1000m/s in at time
increases from .15s to .2s.

Calculating the values of the depths Z1, Z2, Z3, we see trivially that Z1 = 0 and that
by integrating the two equations above yields Z2 = 131.25 and Z3 = 193.75, respectively.

To explain why this is so, suppose there was only one layer with constant velocity
v0, that ”turned on” at time t = 0. Then we could find the depth z corresponding to
each time t by noting that z = (1/2)v0t (distance = rate times time). The extra factor
of (1/2) appears because t is a two-way traveltime. If we had a v(t) medium, where the
value of velocity was a function of time, then we could consider this as being a collection
of discrete layers, and the depth would be the sum of the thicknesses of the discrete layers

z = (1/2)
n∑

k=0

vk(tk+1 − tk), (5.4.1)

where vk is the velocity in the k-th layer.
If the respective vk were smoothly varying velocity functions vk(t) and δtk = (tk+1−tk)

would become dt and thickness of the k-th layer would become

zk = (1/2)
∫ tk+1

tk

vk(t)dt. (5.4.2)

5.5 Sonar and Radar, bad header values and

incomplete information

Most likely, depth conversion for sonar and radar requires simply knowing the speed of
sound in water in the former case, and the speed of light, in the latter. This sounds
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simple, and if we had all of the information in a neat and consistent form, it would be.
The first complication comes from the fact that SU is a seismic package. When

non-seismic data are used in a seismic package, often the time sampling interval must
be scaled to store the data. The reason for this is that the creators of the SEG-Y data
format chose the time sampling interval dt not to be a floating point number, but rather
as an unsigned short integer. They did this to save space in the header, requiring only
2 bytes for a short integer. On a 32 bit machine, the size of the largest value that an
unsigned short can take on is 32767. Thus, scaling is necessary.

Usually, these scale factors are multiples of some power of 10. Try doing depth
conversion on the sonar and radar data, using values you know for the speed of sound

$ suttoz v=SPEED_OF_SOUND_IN_WATER < sonar.su | suximage perc=99 &

and the speed of light

$ suttoz v=SPEED_OF_LIGHT < radar.su | suximage perc=99 &

respectively.
The speed of light is 2.998× 108m/s, in a vacuum, but may be considerably less in a

medium, depending on its composition. The speed of sound in water is 1500m/s. Likely,
the correct values to use in each case will be off by some multiplier that is a power of
10, owing to the fact that the natural frequencies available for radar and sonar are not
in the same band as those used for seismic data.

If we type

$ sukeyword dt

...

unsigned short dt; /* sample interval; in micro-seconds */

..

we see that the time sampling interval, dt, is expressed in microseconds. Seismic fre-
quencies range from a few Hz, to maybe 200 hz, but likely are not up into the kilohertz
range, unless some special survey is being conducted. Sonar frequencies likely range ten’s
of kilohertz to hundreds of kilohertz. Radar operates in the megahertz range. So, it is
common for the user to fake the units on the time sampling interval so as to fit the
requirements of a seismic code.

5.6 The sonar data

The “sonar.su” file is one of the profiles collected by Dr. Henrique Tono of Duke Univer-
sity in a special laboratory setting.

According to a personal communication by Dr. Tono, the “geologic setting” of the
sonar data is thus

86



87

“The deposits and images were produced at the Saint Anthony Falls Lab of
the University of Minnesota. Here, experimental stratigraphy is produced
under precisely controlled conditions of subsidence, base level, and sediment
supply. By superimposing optical images of the sectioned deposits on seismic
images, we can directly observe the ability of seismic profiling to distinguish
different geological features.

The experimental basin is 5 m by 5 m (25 m2) and 0.61 m deep. Sediment
and water were mixed in a funnel and fed into the basin at one corner. This
produced an approximately radially-symmetrical fluvial system, which aver-
aged 2.50 m from source to shoreline. The edges of the basin were artificially
roughened in order to direct the channels away from the walls. The ”ocean
level” was maintained through a variable-discharge siphon located in the op-
posite corner of the basin. Though we imposed a gradual base-level rise, in
order to simulate subsidence, the shoreline maintained a constant position
through the experiment.”

Dr. Tono goes on to describe the experimental layout:

”The outgoing pulse is generated with a Prototype JRS DPR300 (Pulser/Receiver),
which drives a 900-volt square pulse into the transducer. It is set to a
pulse/receive frequency of 100 Hz, with an input gain of 30 dB in echo mode.
The high pass filter is set at 20 KHz, and the low pass filter at 10 MHz. A
Gage-Applied Compuscope 1602 digitizer computer card (16 Bit, 2 Channel
card with acquisition memory of 1 Million samples) is used to perform the
A/D conversion, and the data is displayed on a computer screen by means
of GageScope 3.50. It is digitally recorded on the computer hard disk. A
sample rate of 2.5 MS/s is chosen (Nyquist frequency=1.25 MHz). It is then
re-formatted to SEG-Y and processed with Seismic Unix.

The data were acquired with a 5mm shotpoint and station interval (zero
offset), and 1cm separation between lines.”

In the directory /scratch/GPGNX61/data/Data1 you will find a number of JPEG
format files depicting the experimental setting described by Dr. Tono.

The file ”dsc01324.su” is an SU format file version of the image DSC01324.JPG,
cropped to remove parts of the image that are not the cross section. This is not exactly
the cross section of the data sonar.su, but it gives the idea. Rarely, are we able to slice
into the actual model in this fashion.
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5.7 Homework Problem - #2 - Time-to-depth

conversion of the sonar.su and the radar.su

data. Due in one week.

Find the necessary velocities to permit the correct time-to-depth conversion of the sonar.su
and radar.su data. You will need to figure out the appropriate units, because it is not
possible for these non-seismic datasets to have an accurate representation of the time
sampling interval represented in the trace header field dt. Make sure that you give a
justification explaining why your choice of the appropriate scaling factor (at the very
least a power of 10, possibly something more) is likely the correct one. Remember that
the depth scale on you output data should make sense.

Feel free to search the Internet for information about GPR equipment and depths of
penetration.

5.8 Concluding Remarks

When receiving software, either that is given to us, or that which we purchase, it is
important to try to figure out what assumptions are built into the package. One way to
do this is to apply the software to test data.

As applied scientists and engineers, we are often in in situations where we are forced
to use a tool that is not quite right for the job. It is not uncommon for laboratory exper-
imentalists or ground penetrating radar practitioners to use seismic processing software
to do part of the analysis of their (non-seismic) data. We must be careful to keep the
problem simple and expect only what we deserve from the data.

When receiving data, it is important to know everything that you can possibly know
about the data, such as the spacing of the traces, the time sampling interval, any pro-
cessing that has been applied, and any redefinition of header values.

5.8.1 The sonar - seismic analogy

When explaining seismic imaging to non-geophysicists, it is tempting to say that seis-
mic imaging is “sort of like sonar”. However, sonar is a rough-surface-scattering based
imaging method, whereas seismic imaging is a “specular” or mirror-reflection-scattering
imaging. In rough-surface scattering, the image may, indeed, be formed by ”straight
down and straight back” reflections. In seismic, this is rarely the case. We must take
offset between the source and receiver into account. In seismic methods, there are also
rough-surface contributions. These are the diffractions that we look for on stacked data.

In the early days of seismic prospecting (c. 1930s) there were practitioners of the
seismic method who thought that seismic was the same as sonar and thus expected that
seismic datasets should be “data images.” Such phenomena as “bow ties” provide a clue
that reflection seismic is not the same as sonar.
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Chapter 6

Zero-offset (aka poststack) migration

The first reflection seismic experiment as applied to petroleum exploration was conducted
by physicist John Clarence Karcher in Oklahoma in 1921 (Schriever, 1952) in conjunction
with Marland Oils, which would later become CONOCO. Oklahoma was the center of
the US oil industry at that time.

While it is clear from reading documents from that era that the expectations of some
practitioners of reflection seismic methods were that the results should be similar to
sonar, it is clear from a figure in Karcher’s report from 1921, that he and others were
aware of the geometry of reflection, including a notion of seismic migration from the very
beginning, see Figure 6.1.

By the 1930s most geophysicists were well aware of the geometrical issues at the
heart of proper seismic interpretation. With the formation of the Society of Exploration
Geophysicists in 1930, followed by the first issue of the Society’s journal Geophysics the
proper usage of seismic data for geologic interpretation became known to the geophysical
community.

In Figure 6.2 we see the classical “bowtie” feature seen over a syncline. To the early
interpreter of seismic data, this diagram would not have constituted an image of the
subsurface, but rather a source of geometrical data (such as reflector dip) pertaining the
subsurface reflector.

Another notion that became apparent is that parts of the data on the seismic traces
is displaced from its “correct” position by the properties of wave propagation. Assuming
that all reflections are normal incidence for this zero-offset geometry, it is clear that
parts of the bowtie originate from higher positions on the sides of the syncline. Thus,
the notion of “migrating” those arrivals to their correct location became an important
idea for interpretation. Because the seismic data were analog rather than digital, such
corrections would naturally be applied graphically.

While graphical migration techniques had been applied since the 1930s, the first
notable technical paper describing this technique was published by J. G. (Mendel) Hage-
doorn in 1954. This paper is important because Hagedoorn’s description of the migration
process inspired early digital computer implementations of migration.
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Figure 6.1: Geometry of Karcher’s prospect, note semicircular arcs indicating that
Karcher understood the relation of surfaces of constant traveltime to what is seen on
a seismogram.

6.1 Migration as reverse time propagation.

One way of looking at migration is as a reverse time propagation. The idea may be
visualized by running the output from a forward modeling demo in reverse time. Follow
the following instructions, locating Temp1 in your personal scratch area

$ cd Temp1 (located in your scratch area)

$ cp /scratch/GPGNX61/data/Data1/syncline.unif2 .

$ cp /scratch/GPGNX61/data/Data1/XSyncline .

$ more XSyncline

$ more syncline.unif2

Now in Temp1 If you type:

$ more syncline.unif2

0 0

4000 0

1 -99999

0 1000.

500. 1100.

1000. 1300.

2000. 1000.

2700. 1100.
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Figure 6.2: a) Synthetic Zero offset data. b) Simple earth model.
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3200. 1000.

4000. 1050.

1. -99999

you will see the input data for a wavespeed profile building program called unif2. The
contents of this file define two boundaries in a velocity model. The data for the two
boundaries is separated by the values

1. -99999

The values in the column on the left are horizontal positions and the values on the right
are depths. This model defines the same simple syncline model seen in Fig 6.2. We now
look at the contents of the shell script XSyncline

$ more XSyncline

#! /bin/sh

# Shell script to build velocity profiles with unif2

# input parameters

modelfile=syncline.unif2

velfile=syncline.bin

n1=200

n2=400

d1=10

d2=10

# use unif2 to build the velocity profile

unif2 <$modelfile method=$i ninf=2 nx=$n2 nz=$n1 v00=1000,2000 \

ninf=1 method=spline > $velfile

# view the velocity profile on the screen

ximage < $velfile wbox=400 hbox=200 n1=$n1 n2=$n2 d1=$d1 d2=$d2 \

wbox=800 hbox=400 legend=1 title="Syncline model" label1="depth m" \

label2="distance m " units="m/s" &

# provide input for sufdmod2

xs=1000 zs=10 hsz=10 vsx=1000 verbose=2

vsfile="vseis.su" ssfile="sseis.su" hsfile="hseis.su"

tmax=3.0 mt=10

label1="Depth m"

label2="Distance m"

# perform finite difference acoustic modeling to generate data

# for a single shot in the
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sufdmod2 < $velfile nz=$n1 dz=$d1 nx=$n2 dx=$d2 verbose=1 \

xs=$xs zs=$zs hsz=$hsz vsx=$vsx hsfile=$hsfile \

vsfile=$vsfile ssfile=$ssfile verbose=$verbose \

tmax=$tmax abs=1,1,1,1 mt=$mt |

suxmovie clip=1.0 \

title="Acoustic Finite-Differencing" \

windowtitle="Movie" \

label1=$label1 label2=$label2 \

n1=$n1 d1=$d1 f1=$f1 n2=$n2 d2=$d2 f2=$f2 \

loop=1 sleep=.8 &

exit 0

You may run the demo by typing:

$ XSyncline

The result shows the wavespeed profile for the model. This is similar to the “simple”
model that will be discussed later in the these notes. A movie showing snapshots of
the wavefield will begin. Watch the wavefront of the energy from the shot expand. You
may stop and restart the movie by pressing the far right mouse button. Of interest are
the frames at which the first reflections begin. As the movie progresses, you will see
the reflected field progress as the reflection point propagates along the reflector surface.
Indeed, from viewing this movie, we can see why an integral over the reflector surface,
called the “Kirchhoff modeling formula” is a way of modeling the reflected field.

Note that you only see wavefronts, there is nothing like a “ray” to be seen. A ray is
the trajectory taken by a point on a wavefront. Second, notice that the “bowtie” forms
as the caustic in the propagating wavefield travels to the surface.

The movie will run in a loop. You may stop the movie by pushing the right mouse
button. You may reverse the movie by pressing the middle mouse button. Effectively,
running the field backward in time is “reverse-time migration.” In seismic data, we do
not have a record of the down-traveling field. All we have is the record of that part
of the reflected field that hits the surface of the earth where there are geophones. The
migration process finds the place where the downward traveling field and the reflected
field overlay—the reflector surface. One way of looking at migration is that we would
like to cross-correlate the down-traveling field with the time-reversed reflected field. The
place where these fields correlate is at the reflector surface.

You may also see what the seismic data looks like recorded at the surface of the earth
model by viewing the file hseis.su via

$ suximage < hseis.su perc=99

to see the direct arrival and the bowtie-shaped reflected arrival.
Finally you may change the depths in the model by editing the file syncline.unif2,

or change the location of the source to see what varying these quantities changes in the
data. You may slow down the movie by increasing the value of the sleep= parameter.
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t=0.0

Figure 6.3: Cartoon showing the Hagedoorn method applied to the arrivals on individual
seismic traces. The reflector is delineated by the envelope of the arcs.

6.2 Lab Activity #5 - Hagedoorn’s graphical

migration

The purpose of this lab example is to migrate the simple data in Figure 6.2a) by Ha-
gadoorn’s graphical method. These synthetic data represent the zero-offset reflection
seismograms recorded over the undulating reflector model in Figure 6.2b). The wave-
speed in the upper medium is assumed to be 2000 m/s, and the data are drawn in such
a way that 1.0 s two way time is equivalent to 1000 m of distance. Thus, the time scale
translates into a depth scale that is compatible with the horizontal scale.

If we draw a circle centered at time t = 0 of a given seismic trace and passing through
a given seismic arrival, we have sketched all possible reflection points from which the
seismic arrival could have originated. These circles are the same as the incident field seen
in the seismic movie. If we recall, seismic migration finds the place where the incident
field interacts with the reflected field—the reflector surface.

When similar circles are drawn for every arrival on every trace, the result is a collection
of circles whose envelope delineates the reflector. See Fig 6.4 for an idea of what this
should look like.

Mathematically this method of migration may be thought of as the reconstruction of
the reflector by defining the tangent vectors of the reflector. What then, are the circles we
have drawn? The answer can by found by looking at Figure 6.6. For our 2D constant-
wavespeed example, all solutions of the wave equation, which is to say all wavefronts,
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Figure 6.4: Hagedoorn’s method applied to the simple data of Fig 6.2. Here circles, each
centered at time t = 0 on a specific trace, pass through the maximum amplitudes on
each arrival on each trace. The circle represents the locus of possible reflection points in
(x, z) where the signal in time could have originated.
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Figure 6.5: The dashed line is the interpreted reflector taken to be the envelope of the
circles.
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Figure 6.6: The light cone representation of the constant-velocity solution of the 2D wave
equation. Every wavefront for both positive and negative time t is found by passing a
plane parallel to the (x, z)-plane through the cone at the desired time t. We may want
to run time backwards for migration.

x z

t
(ξ,τ)

Figure 6.7: The light cone representation for negative times is now embedded in the
(x, z, t)-cube. A seismic arrival to be migrated at the coordinates (ξ, τ) is placed at the
apex of the cone. The circle that we draw on the seismogram for that point is the set of
points obtained by the intersection of the cone with the t = 0-plane.
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can be found by passing a horizontal plane through the cone in Figure 6.6. Both physical
(causal) solutions (the positive t cone) and the nonphysical (anti-causal) solutions (the
negative t cone) are depicted. We use the causal cone for modeling, and the anti-causal
or reverse-time cone for migration.

To see what a given circle means in Hagadoorn’s method, we may look at the reverse
time cone in Figure 6.7. We may think of the curve on the t = 0-plane as the locus of
all possible positions from which the reflection originated, or we may think of this as the
wavefront of the backward-propagated wave.

If we were to apply the Hagedoorn method on the computer, we might consider
creating for each seismic trace a panel of seismic traces replicating our original seismic
arrivals, but on a semicircular pattern. “Spraying” out our seismic data for each trace
along the respective Hagedoorn circle would yield one new panel of traces for each seismic
trace. Our 80 traces would then become 80 panels of sprayed traces. We would then
sum the corresponding traces on each panel. Constructive interference would tend to
enhance the region near the reflector, and destructive interference would tend to eliminate
everything else, revealing only the reflector. Does this method work? Yes, but it is subject
to interference errors, if the data are not densely sampled in space.

Because a point at (ξ, τ) represents an impulse in the (x, t) space, corresponding
circle drawn in Hagadoorn’s method may be thought of as the impulse response of the
migration operation.

6.3 Migration as a Diffraction stack

Another approach to migration is immediately apparent. If we apply Hagedoorn’s method
to the diffraction from a point scatterer, then we observe that the scatterer is recon-
structed. However, tangent vectors are not defined with regard to a point scatter. In-
stead, it must be the ray vector from the source/receiver position to the scatterer that is
being reconstructed. In other words, the reflected ray vector is the distinguished vector
associated with the imaging point. For a reflector surface, this is the perpendicularly-
reflected ray vector. See Figure 6.8.

Furthermore, we might ask: why is it necessary to draw Hagedoorn’s circles at all?
Suppose that we were to sum over all possible diffraction hyperbolae. Then the largest
arrivals would exist only where a hyperbola we sum on hits a hyperbola in the data. The
sum would then be placed at a point at the apex of the hyperbola passing through our
data. This type of migration is referred to as a diffraction stack. We sum or “stack”
data, but we do this over a diffraction curve. Furthermore the output need not be a
depth section, but could be a time section.

A useful diagram for understanding the diffraction stack is the light cone diagram in
Figure 6.9. A light cone is the representation of the surface where solutions of the wave
equation live. The scatterer is located at the point (x, z). Time increases downward. A
horizontal slice through the cone reveals the circular wavefronts that are the circles drawn
in Hagedoorn’s method. A vertical slice through the cone in (x, t) reveals the hyperbola
that is the characteristic shape of a diffraction in a constant wavespeed medium.

98



99

0

2

T
im

e 
(s

ec
)

1 2 3 4 5 6
Distance (km)

Diffraction

Figure 6.8: Hagedoorn’s method of graphical migration applied to the diffraction from
a point scatterer. Only a few of the Hagedoorn circles are drawn, here, but the reader
should be aware that any Hagedoorn circle through a diffraction event will intersect the
apex of the diffraction hyperbola.
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Figure 6.9: The light cone for a point scatterer at (x, z). By classical geometry, a vertical
slice through the cone in (x, t) (the z = 0 plane where we record our data) is a hyperbola.
Time migrations collapse diffraction hyperbolae to their respective apex points. Depth
migrations map these apex points into the (x, z) (2D) plane.

6.4 Migration as a mathematical mapping

Another diagram that reveals migration as a type of data transformation or mapping
may be seen in Figure 6.10. Here, we see that the impulse response of the migration
operator is a circular curve in constant wavespeed media.

The diffraction in (x, t) may be thought of as the “impulse response” of the modeling
operation that made the data from a point at (x, z). Migration by diffraction stack,
therefore, consists of selecting a point (x, z), modeling the diffraction curve in (x, t), and
then summing through the data over this curve. Note that this must be done for every
output point to make the image.

Figure 6.10 represents more than migration. Going from a) to b) is Hagedoorn’s
migration method. Going from c) to d is the diffraction stack migration method. If
however, we reverse directions, mapping from from b) to a) or from d) to c then we are
modeling or doing data-based de-migration, which is the inverse of migration. The idea
then is that modeling is the forward process and migration is the inverse operation.

6.5 Concluding Remarks

The notion of the value and motivation of using seismic data has changed through the
history of seismic methods. Originally, seismic data were used to find an estimate of
perhaps only a single reflector. As the technique developed, the depth to and dip of
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Figure 6.10: Cartoon showing the relationship between types of migration. a) shows a
point in (ξ, τ)j, b) the impulse response of the migration operation in (x, z), c) shows a
diffraction, d) the diffraction stack as the output point (x, z).

a specific target reflector was found. Most notably was Frank Rieber’s “dip finder.”
The “dip finder” was a recording system that was effectively an analog computer that
delivered an estimate of depth and dip for stronger reflectors. These data were then
used for drawing geologic cross-sections. In fact, Frank Rieber’s dip finder was doing
something similar to a variety of migration called “map migration.”

As the petroleum and natural gas industry evolved, so did the importance of the
seismic method. The technique started out as an aid in interpretation, becoming later
an “imaging technology.” Today, seismic migration is viewed by many as the “solution
to an inverse problem” wherein recorded seismic data are used as input to solve for
the reflectivity of the reflectors, as well as other important material parameters that
characterize lithology.
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Chapter 7

Lab Activity #6 - Several types of
migration

In this chapter we will apply several types of migration to the simple.su data. These
types of migration represent many of those that are commonly used in industry.

7.1 Different types of “velocity”

All seismic migrations require a background wavespeed (velocity) profile. However, we
must be very careful when addressing the term “velocity.” The actual wavespeeds in the
subsurface are called interval velocities, and most likely are going to be a function of
position.

However, the types of velocities that we often encounter, such as those obtained
from velocity analysis are stacking velocity, also known as the NMO velocity, which
is approximately the RMS (root mean squared) velocity. Such velocities are often
expressed as velocity as a function of time.

7.1.1 Velocity as v(t)

Having a velocity that is a function of time may seem strange, at first, but imagine that
you have a seismic section, with several strong seismic horizons. These strong arrivals
must represent relatively large impedance contrasts. If we had a set of well logs to go
with the seismic data, then we could identify those rock units with the strong impedance
contrasts. We could build a collection of velocities chosen from the well log, and assign
the times from the arrival time on the seismic section and thus we would define a v(t).
If we have v(t) for specific locations in the rock volume we are investigating we could
assemble a v(t, x) or a v(t, x, y) through some sort of interpolation.

This assumes a model of two-way vertical propagation in a model consisting of flat
horizontal reflectors between media of piecewise constant velocities. This is clearly an
oversimplification.
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V(z)seismic trace V(t)

Figure 7.1: Cartoon showing a seismic trace, the corresponding V (t) profile, and the
corresponding V (z) velocity function. Here t is the two-way traveltime for vertical prop-
agation and the velocity is interval velocity.

7.1.2 The average velocity vAV G(t)

Having defined an (interval) velocity that is a function of the two-way vertical traveltime
in a model consisting of flat horizontal layers of constant velocity, we may find that the
average velocity to the n-th reflector is of interest. This is computed via

V AVG
n =

∑n
j=1 V

INT
j (tj − tj−1)∑n

j=1(tj − tj−1)
.

Here, tj is the time to the j-th reflector.

7.1.3 The Root-Mean-Square (RMS) velocity

The so-called “root-mean-square” (RMS) velocity at the n-th reflector, is given by

vRMS
n =

(∑n
j=1 V

2
j (tj − tj−1)∑n

j=1(tj − tj−1)

)1/2

.

In a horizontally layered, piecewise-constant velocity medium, the NMO stacking
velocity is the same as the RMS velocity.

7.1.4 Velocity conversion vRMS(t) to V int(t)

The conversion between these two is given by the Dix equation

V INT
n =

[
(tnv

2
n − tn−1v

2
n−1)

(tn − tn−1)

]1/2
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where V INT
n is the interval velocity in the n-th layer, tn−1 is the traveltime to the n−1-th

reflector, tn is the traveltime to the n-th reflector, vRMS
n−1 is the root-mean-squared velocity

of the n−1-th reflector, and vRMS
n is the root-mean-squared velocity of the n-th reflector.

Often the output of a migration is horizontal position versus “migrated time.” This
implies that the input velocity is expressed as v(t), rather than v(x, z). We may have
interval or RMS velocities as a function of time, e.g. V INT(t) or vRMS(t). This may seem
strange at first, but if we have V (t) profile, then V (z) is obtained by stretching time to
depth.

In SU a program called velconv performs many simple conversions between interval
and RMS velocities. Type velconv with no options to see the selfdoc of the program

$ velconv

VELCONV - VELocity CONVersion

velconv <infile >outfile intype= outtype= [optional parameters]

Required Parameters:

intype= input data type (see valid types below)

outtype= output data type (see valid types below)

Valid types for input and output data are:

vintt interval velocity as a function of time

vrmst RMS velocity as a function of time

vintz velocity as a function of depth

zt depth as a function of time

tz time as a function of depth

Optional Parameters:

nt=all number of time samples

dt=1.0 time sampling interval

ft=0.0 first time

nz=all number of depth samples

dz=1.0 depth sampling interval

fz=0.0 first depth

nx=all number of traces

Example: "intype=vintz outtype=vrmst" converts an interval velocity

function of depth to an RMS velocity function of time.

Notes: nt, dt, and ft are used only for input and output functions

of time; you need specify these only for vintt, vrmst, orzt.

Likewise, nz, dz, and fz are used only for input and output
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functions of depth.

The input and output data formats are C-style binary floats.

7.2 Recap of the history of migration

As we saw in the last chapter, it is clear that members of the geophysical community
were aware of the issue of seismic migration from the very beginning of the application
of the reflection seismic method in 1921. Hagadoorn, 1954 discussed the physics behind
the graphical migration methods that were in use in his day.

Historically, the earliest nongraphical migration methods were developed in the early
1960s. The first finite-difference migration method was created by Jon Claerbout in
1970. The “axis year” of seismic migration was 1978 with the publication of Stolt’s f-k
migration, Gazdag’s phaseshift migration, and Schneider’s Kirchhoff migration.

In 1979 Norman Bleistein and Jack K. Cohen published an amplitude preserving
migration method, which they called “inversion,” because the problem of migration was
posed as the solution to inverse problem with the intent of solving for the image. Another
similar approach was followed by Miller, Oristaglio, and Brown in 1985 relating migration
to the generalized Radon Transfrom.

Once the door was opened, the competition between speed versus accuracy resulted
in the development of a plethora of seismic migration methods, each with its benefits
and drawbacks, extending to variable background, 3D, and more recently, to anisotropic
media.

The issues of interest to seismic practicioners has changed from providing dip and
depth information, to estimating reflectivities and fracture orientation.

What follows here are examples of a selection of a few of these different approaches
to seismic migration in a side-by-side comparison.

7.3 Stolt or (f, k)-migration, 1978

To migrate the simple data in the computer we first begin with Stolt migration. Stolt’s
method, published in 1978, is a migration by Fourier transform and is often called (f, k)
migration. If we consider migration to be a “shifting of data,” which is expressed as a
signal processing technique, then we may consider that shifting to be done as a filtering
process. The data are shifted both temporally and spatially, suggesting that the filter
doing the shifting must be a filter that operates in both the frequency and wavenumber
domain. If the velocity function is variable (with time) the Stolt method accounts for
this by applying a stretch to the data prior to the filtering operation.

To get the shifting correct, Robert Stolt based his “shifting filter” on an integral
equation representation of the wave equation, and made use of the fast Fourier transform
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algorithm for speed. To handle variable wavespeed Stolt introduced a “stretch,” much
as we scaled the time section to appear interchangeable with depth.

7.3.1 Stolt migration of the Simple model data

Here we apply Stolt migration to the simple.su data. Copy the dataset into your local
working directory via:

$ pwd (you should be in your scratch area)

$ mkdir Temp2 (in your scratch area)

$ cp /scratch/GPGNX61/data/Data2/simple.su Temp2

changing your working directory to Temp2 via:

$ cd Temp2

You may view the data via:

$ suxwigb < simple.su xcur=3 title="Simple"

The Stolt migration is performed via the program sustolt. To see the self documentation
for sustolt type:

$ sustolt

SUSTOLT - Stolt migration for stacked data or common-offset gathers

sustolt <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [...]

Required Parameters:

cdpmin minimum cdp (integer number) for which to apply DMO

cdpmax maximum cdp (integer number) for which to apply DMO

dxcdp distance between adjacent cdp bins (m)

Optional Parameters:

noffmix=1 number of offsets to mix (for unstacked data only)

tmig=0.0 times corresponding to rms velocities in vmig (s)

vmig=1500.0 rms velocities corresponding to times in tmig (m/s)

...

Among the many parameters, those that are required are cdpmin, cdpmax, dxcdp, vmig
and tmig. Note: the type of velocities, vmig, that this program requires are RMS (or
stacking) velocities as a function of time! To see the range of the cdps in the data,
type
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$ surange < simple.su

80 traces:

tracl 1 80 (1 - 80)

cdp 1 80 (1 - 80)

trid 1

ns 501

dt 4000

Thus, cdpmin=1 and cdpmax=80. The data were made with a 40m spacing, and with a
velocity in the first medium of 2000m/s. Applying sustolt

$ sustolt < simple.su cdpmin=1 cdpmax=80

dxcdp=40 vmig=2000 tmig=0.0 > stolt.simple.su

We may view the output of Stolt migration via

$ suxwigb < stolt.simple.su xcur=3 title="Stolt migration of simple data" &

The migrated data look similar in many ways to the graphical migration.
These data have been purposely chosen to be too sparsely sampled spatially to be

considered “good.” This choice was made to accentuate the artifacts on the data. These
artifacts are known by the terms “diffraction smiles, ”migration impulse responses,” or
“endpoint contributions.”

The first of these terms alludes to diffractions that we have seen before in data.
Actual, scattering diffractions are “frowns,” which is to say that they are downward
curving features, whose hyperbolic-like shape reflects hyperbolic moveout with separation
between source and scatterer described by the NMO equation. However, “defractions
smiles” curve up owing to the fact that they represent function that is needed to undo
diffraction.

The term “migration impulse response” refers to the fact that sufficiently isolated
arrivals on a seismic section appear to be impulses (delta functions) to the migration
operator.

The term “endpoint contribution” refers to the fact that migration is an integration
over the data, and that truncating the input data is equivalent to defining endpoints of
integration. In integral calculus students all evaluate integrals at integration limits. In
wave propagation problems it turns out that constructive interference at interior station-
ary points is more important than endpoint contributions, as these interior stationary
points are the places where constructive interference occurs.

No matter what you call these, when you see output dominated by diffraction smiles,
as we see here, the spatial coverage is insufficient for proper imaging. In a later section
we will see how to fix this condition.

Diffraction smiles as impulse responses

An effective way of thinking about many noise artifacts on migrated data is to note that
migration operators expect smooth input. If the input is not smooth, such as if there is
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Figure 7.2: a) Spike data, b) the Stolt migration of these spikes. The curves in b) are
impulse responses of the migration operator, which is what the curves in the Hagadoorn
method were approximating. Not only do the curves represent every point in the medium
where the impulses could have come from, the amplitudes represent the strength of the
signal from that respective location.
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a noise spike or an abrupt termination of the data, this is similar to putting an impulse
into the algorithm. The result is an impulse response.

By applying suspike we may make data consisting only of 4 nonzero data values
(spikes). The data are otherwise the same number of samples (501) and the same number
of traces (80) as simple.su

#! /bin/sh

$ suspike nspk=4 nt=501 ntr=80 dt=.004 ix1=40 it1=63 ix2=40 \

it2=175 ix3=40 it3=40 it3=330 ix4=40 it4=420 \

| sushw key=cdp a=1 b=1 > spike_simple.su

and we apply sustolt with the same parameters as we used on the simple.su data

$ sustolt < spike_simple.su vmig=2000 tmig=0.0

dxcdp=40 cdpmin=1 cdpmax=80 > stolt.spike.su

shown in Figure 7.2

7.4 Gazdag or Phase-shift migration, 1978

In 1978 Jeno Gazdag published a type of migration that also makes use of the shift
theorem. In this class of method, the model is discretized in such a way that the vertical
direction z is considered to be preferred. The data are Fourier transformed, and the
migration is applied as a phaseshift, to each wavenumber. The data are then inverse
Fourier transformed.

The program sugazmig

$ sugazmig

SUGAZMIG - SU version of Jeno GAZDAG’s phase-shift migration

for zero-offset data, with attenuation Q.

sugazmig <infile >outfile vfile= [optional parameters]

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval

ft=0.0 first time sample

ntau=nt(from data) number of migrated time samples

dtau=dt(from header) migrated time sampling interval

ftau=ft first migrated time sample
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tmig=0.0 times corresponding to interval velocities in vmig

vmig=1500.0 interval velocities corresponding to times in tmig

...

Try the Gazdag migration of the simple.su data via:

$ sugazmig < simple.su dx=40 vmig=2000 tmig=0.0 > gaz.simple.su

Note: the velocities, vmig, here are interval velocities as a function of time.
You will notice that you could do several Stolt migrations in the time that it takes to

do a single Gazdag.
By the application of a slightly different formulation of phase-shift migration, the

performance, as well as the accuracy at steeper dips of Gazdag migration can be improved.
The result is Dave Hale’s sumigps

$ sumigps

SUMIGPS - MIGration by Phase Shift with turning rays

sumigps <stdin >stdout [optional parms]

Required Parameters:

None

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 distance between successive cdps

ffil=0,0,0.5/dt,0.5/dt trapezoidal window of frequencies to migrate

tmig=0.0 times corresponding to interval velocities in vmig

vmig=1500.0 interval velocities corresponding to times in tmig

vfile= binary (non-ascii) file containing velocities v(t)

nxpad=0 number of cdps to pad with zeros before FFT

ltaper=0 length of linear taper for left and right edges

verbose=0 =1 for diagnostic print

...

Try an improved phase-shift migration:

$ sumigps < simple.su dx=40 vmig=2000 tmig=0.0 > ps.simple.su

7.5 Claerbout’s finite-difference migration, 1970

Another “backpropagation” approach was taken by Jon Claerbout in 1970 via finite-
difference solution of a one-way approximate wave equation. This is a reverse-time finite
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difference migration, but it is not the exact wave equation. The “15 degree” part refers to
the angle of a cone about vertical, within which the traveltime behavior of the migration
is sufficiently similar to that of the standard wave equation as to yield an acceptable
result. Other approximations for increasingly larger angles have been created. An im-
plementation of a version of this finite-difference migration that gives the user a choice
of different “angles of accuracy” is sumigfd

SUMIGFD - 45-90 degree Finite difference migration for zero-offset data.

sumigfd <infile >outfile vfile= [optional parameters]

Required Parameters:

nz= number of depth sapmles

dz= depth sampling interval

vfile= name of file containing velocities

(see Notes below concerning format of this file)

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval

dip=45,65,79,80,87,89,90 Maximum angle of dip reflector

...

Try:

Change directory to your scratch area.

$ cd Temp2

$ cp /scratch/GPGNX61/data/Data2/vel.fdmig.simple .

$ sumigfd < simple.su dx=40 dz=12 nz=150 vfile=vel.fdmig.simple > fd.simple.su

Note: the velocity file (vfile) expects interval velocities as a function of (x, z),
where x is taken as the fast dimension in this file.

7.6 Ristow and Rühl’s Fourier finite-difference

migration, 1994

A hybridization between phase-shift migration and finite-difference migration known as
“Fourier finite difference” was published in 1994 by D. Ristow and T. Rühl. This type
of migration is implemented in sumigffd

SUMIGFFD - Fourier finite difference migration for

zero-offset data. This method is a hybrid migration which

combines the advantages of phase shift and finite difference
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migrations.

sumigffd <infile >outfile vfile= [optional parameters]

Required Parameters:

nz= number of depth sapmles

dz= depth sampling interval

vfile= name of file containing velocities

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval

ft=0.0 first time sample

fz=0.0 first depth sample

...

Try:

In your scratch area

$ pwd (should show your scratch area)

$ cd Temp2

$ cp /scratch/GPGNX61/data/Data2/vel.fdmig.simple .

$ sumigffd < simple.su dx=40 dz=12 nz=150

vfile=vel.fdmig.simple > ffd.simple.su

7.7 Stoffa’s split-step migration, 1990

Another algorithm, known as the “split-step” algorithm, developed by P. Stoffa, et al in
1990 is an extension of this idea with sumigsplit

SUMIGSPLIT - Split-step depth migration for zero-offset data.

sumigsplit <infile >outfile vfile= [optional parameters]

Required Parameters:

nz= number of depth sapmles

dz= depth sampling interval

vfile= name of file containing velocities

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval
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ft=0.0 first time sample

fz= first depth sample

...

Try:

In your scratch area

$ pwd (should show your scratch area)

$ cd Temp2

$ cp /scratch/GPGNX61/data/Data2/vel.fdmig.simple .

$ sumigsplit < simple.su dx=40 dz=12 nz=150

vfile=vel.fdmig.simple > split.simple.su

7.8 Gazdag’s Phase-shift Plus Interpolation

migration, 1984

A problem with the original Gazdag phaseshift migration is that it did not handle lateral
velocity variation well. An approach called “phase shift plus interpolation” (PSPI) was
developed Jeno Gazdag in 1984 that partially alleviates this problem. In SU this is
implemented as sumigpspi

SUMIGPSPI - Gazdag’s phase-shift plus interpolation migration

for zero-offset data, which can handle the lateral

velocity variation.

sumigpspi <infile >outfile vfile= [optional parameters]

Required Parameters:

nz= number of depth sapmles

dz= depth sampling interval

vfile= name of file containing velocities

(Please see Notes below concerning the format of vfile)

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval

...

Try:

$ sumigpspi < simple.su dx=40 dz=12 nz=150

vfile=vel.fdmig.simple > pspi.simple.su
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All of these programs are similar in structure, with only the interpolation algorithm
being different. Each of these algorithms is easily extended to prestack application (with
amplitudes not being preserved).

Note: All of these programs expect an input velocity in terms of interval velocities
as a function of (x, z). Correspondingly, the output files of all of these programs are
depth sections, which, if everything has been done correctly, is a representation of a cross
section through the earth.

7.9 Lab Activity #7 - Shell scripts

By now everyone is tired of typing the same commandlines, repetetively. Furthermore, it
is easy to forget exactly what was typed for further testing. To remedy this problem we
will now capture these commandlines into a program called a “shell script.” The shell
script is one of the most powerful aspects of Unix and Unix-like operating systems.

For example, we can capture all of the migrations above into a single script for com-
parison. Begin by typing

cd Temp2

and opening a file called Migtest using your favorite editor. The contents of Migtest
should be:

#! /bin/sh

set -x

# Stolt

sustolt < simple.su cdpmin=1 cdpmax=80 \

dxcdp=40 vmig=2000 tmig=0.0 > stolt.simple.su

# gazdag

sugazmig < simple.su dx=40 vmig=2000 tmig=0.0 > gaz.simple.su

# phase shift

sumigps < simple.su dx=40 vmig=2000 tmig=0.0 > ps.simple.su

# finite difference

sumigfd < simple.su dx=40 dz=12 nz=150 \

vfile=vel.fdmig.simple > fd.simple.su

# split step

sumigsplit < simple.su dx=40 dz=12 nz=150 \

vfile=vel.fdmig.simple > split.simple.su
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# phase shift plus interpolation

sumigpspi < simple.su dx=40 dz=12 nz=150 \

vfile=vel.fdmig.simple > pspi.simple.su

exit 0

The top line indicates that the Bourne shell (sh) is being used to run the commands
that follow. The “set -x” tells the Bourne shell interpretor to echo each command as it
is being run. The backslashes (
) indicate are line continuation symbols and should have no spaces following them.

When you have finished typing in the contents of the Migtest, then save the file.
You will need to change the permissions of this file to give the script execute permission.
This is done via

$ chmod u+x Migtest

You may now run the shell script by simply typing:

$ Migtest

If you get a “Migtest: command not found” error but the permissions are correct, you
likely need to have ”.” on your path. You can change your path, or type equivalently

$ ./Migtest

to run Migtest. Each command within the shell script is run in succession.
We may consider writing a shell script called ViewMig with the contents

#! /bin/sh

# Stolt

suxwigb < stolt.simple.su title="Stolt" wbox=800 hbox=200 d2=40 \

xbox=200 ybox=550 &

# gazdag

suxwigb < gaz.simple.su title="Gazdag" wbox=800 hbox=200 d2=40 \

xbox=200 ybox=550 &

# phase shift

suxwigb < ps.simple.su title="Phase Shift" wbox=800 \

hbox=200 d2=40 xbox=200 ybox=450 &

# finite difference

suxwigb < fd.simple.su title="Finite Difference" \

wbox=800 hbox=200 d2=40 xbox=150 ybox=350 &
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# Fourier finite difference

suxwigb < ffd.simple.su title="Fourier Finite Difference" \

wbox=800 hbox=200 d2=40 xbox=150 ybox=350 &

# split step

suxwigb < split.simple.su title="Split step" \

wbox=800 hbox=200 d2=40 xbox=150 ybox=250 &

# phase shift plus interpolation

suxwigb < pspi.simple.su title="PSPI" \

wbox=800 hbox=200 d2=40 xbox=0 ybox=0 &

exit 0

As before, save ViewMig, and change the mode via

chmod u+x ViewMig

to make the file executable. Run the command by typingViewMig on the commandline:

$ ViewMig

You may vary the parameters to change the appearance of the plot. The idea of
ViewMig is to give side by side comparisons of the various migration types.

7.10 Homework #3 - Migration test. Due in one

week

Rewrite the shell scriptMigtest (combiningViewMig so that it saves plots as PostScript
output (i.e. use supswigb or supsimage. Compare the output of the different migra-
tion methods. Take care to recognize that you may need vastly different values for
hbox= and wbox= or height= and width= by checking the self documentation for
supsimage, psimage, supswigb, and pswigb. Do not set xbox= and ybox=.

Take particular note of the appearance of the output, any noise or artifacts you see.
Include comparison figures, commands, and commentary. Again, submit no more than 3
pages maximum as a PDF file.

7.10.1 Hints

PostScript is a graphics language created by Adobe systems which is the forerunner to
PDF. PostScript is still widely used and has not really been replaced by PDF.

This is what the beginning of your migration and view script might look

#! /bin/sh
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# Stolt

sustolt < simple.su cdpmin=1 cdpmax=80 \

dxcdp=40 vmig=2000 tmig=0.0 > stolt.simple.su

supswigb < stolt.simple.su title="Stolt migration" wbox=8 hbox=4 d2=40 \

label1="time (s)" label2="midpoint position (m)" > stolt.eps

...

Here the back slashes (\) are line continuations and there should be no blank spaces
after these. Alternatively, you could make these single long lines, and avoid the line
continuation issue, entirely.

On most systems there is a tool for viewing PostScript format files. One such tool is gs
which is the GhostScript interpreter. GhostScript is a powerful graphics data conversion
program. Another PostScript viewer gv which is GhostView . You may be able to view
your .eps files with gs.

Others are “Evince,” ”Okular,” and the ”Image Viewer”.

$ gs filename.eps

either the plot will open on the screen, or a new icon will appear on the bar of icons on
the left side of your screen. You should also find that if you are using OpenOffice (or
LibreOffice) Writer that you should be able to drag and drop PostScript files into your
OpenOffice (or LibreOffice) Writer document, directly.

When using any graphics program you need to be aware of its options. In SU, make
sure that you type:

$ supsimage

$ psimage

$ supswigb

$ pswigb

$ supswigp

$ pswigp

so that you can see all of the various options that these programs may expect. Note
that the dimensions of the plots are in inches, and that some programs expect plot
dimentions as wbox= hbox= whereas others expect the dimensions to be given as
width= height=. For example. Note that the color schemes are completel different in
the PostScript generating programs, from the X-windows graphics program counterparts.

7.11 Lab Activity #8 - Kirchhoff Migration of

Zero-offset data

In 1978, Bill Schneider published his Kirchhoff migration method. The program that
implements this in SU is called sukdmig2d.
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There are two shell scripts in /scratch/GPGNX61/data/Data2 that you will need to
be able to run this on the simple.su data. Go to your home directory, make a temporary
directory called Temp2, and copy

Change directory to your scratch area

$ pwd (should show your scratch directory)

$ mkdir Temp2

$ cd Temp2

$ cp /scratch/GPGNX61/data/Data2/Rayt2d.simple .

$ cp /scratch/GPGNX61/data/Data2/Kdmig2d.simple .

$ cp /scratch/GPGNX61/data/Data2/simple.su .

$ cp /scratch/GPGNX61/data/Data2/vel.kdmig.simple .

$ cd Temp2

Furthermore, you will need to make sure that the headers are correct on simple.su.
You should see:

$ surange < simple.su

80 traces:

tracl 1 80 (1 - 80)

cdp 1 80 (1 - 80)

trid 1

sx 0 3160 (0 - 3160)

gx 0 3160 (0 - 3160)

ns 501

dt 4000

If not (for example, if the sx and gx fields are not set), then do the following

$ mv simple.su simple.orig.su

$ sushw < simple.orig.su key=sx,gx a=0,0 b=40,40 > simple.su

(If the source and geophone positions are not set, then the sukdmig2d program will
think that all of the input data are at the position sx=0, gx=0.)

The method of migration is called “Kirchhoff” because the technique is based on
an integral equation called the Kirchhoff modeling formula, which is a high-frequency
representation of the wavefield emanating from a reflector in the form of an integral
over the reflector. Some people like to think of the Kirchhoff integral as describing an
“exploding reflector” model of reflectivity. In some sense, the Kirchhoff migration formula
is an approximate inverse of the Kirchhoff modeling formula, meaning that we are in an
approximate sense solving for the reflectivity in the subsurface.

The migration integral equation may be implemented as such, or as a sum (an in-
tegral) over diffractions (the diffraction stack). In either case, the Kirchhoff migration
formula may also be called a “Kirchhoff-WKBJ migration,” where the WKBJ (Wentzel,
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Kramers, Brilliouin, Jeffreys) denotes that ray theoretic quantities are being used. Most
importantly traveltimes and some estimate of ray-theoretic amplitudes need to be com-
puted for the background wavespeed profile to do the migration. If you recall, we might
view migration as moving data up or down along a light cone. Approximating the wave-
field by ray tubes is one way of doing that.

The shell script Rayt2d.simple runs the program rayt2d, which generates the nec-
essary traveltime tables. The shell script Kdmig2d.simple runs sukdmig2d on the
simple.su data. Read each shell script by typing:

$ more Rayt2d.simple

#! /bin/sh

rayt2d vfile=vel.kdmig.simple \

dt=.004 nt=501 fa=-80 na=80 \

fz=0 nz=501 dz=4 \

fx=0 nx=80 dx=40 ek=0 \

nxs=80 fxs=0 dxs=40 ms=1 \

tfile=tfile.simple

xmovie < tfile.simple clip=3 n1=501 n2=80 loop=1 title="%g traveltime table" &

You may type ‘q’ to get out of the more program.
The program rayt2d generates a traveltime table containing the traveltime from each

source to each receiver for every point in the model. The movie shown by xmovie shows
these traveltimes as shades of gray. The idea of running the movie over the traveltimes
is to see if there are any inconsistencies in the collection of traveltimes.

$ more Kdmig2d.simple

#! /bin/sh

sukdmig2d infile=simple.su outfile=kdmig.simple.su ttfile=tfile.simple \

ft=0 fzt=0 nzt=501 dzt=4.00 angmax=80.0 \

fxt=0 nxt=80 dxt=40 fs=0 ns=80 ds=40 \

dxm=40 v0=2000 noff=1 off0=0 doff=0

You may type ‘q’ to get out of the more program.
The program sukdmig2d performs the Kirchhoff migration drawing on the travel-

times created by rayt2d that are in the file tfile.simple. Indeed, if a person had a
better traveltime table generator, then this program could use those traveltimes instead.

To apply the Kirchhoff migration to the dataset simple.su we first type:
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$ Rayt2d.simple

to generate the traveltime tables for sukdmig2d. You will notice that a little window
showing a movie will appear. You may grab the lower corner of this window by clicking
and dragging with your mouse to stretch the image to a larger size. This movie shows
the map of traveltimes to each point in the subsurface from the common source-receiver
position. As this is only a constant-background model, we would expect that the curves
of constant traveltime (wavefronts) are circles. You should be able to detect this in the
change of the grayscale. If the curves do not appear to be perfect circles, this is due the
aspect ratio of the plot. You may stretch the plot so that it has the correct aspect ratio.

To perform the the Kirchhoff migration we type

$ Kdmig2d.simple

the resulting migrated data is the file kdmig.simple.su which you may view via

$ suximage < kdmig.simple.su &

7.12 Spatial aliasing

You may have noticed that the output from migrating the simple.su test pattern, no
matter what migration method is used, contains artifacts. Because all of the various
migration methods tried have more or less the same pattern of artifacts, we are led to
suspect that this is caused by the simple.su dataset, rather than the migration routines
themselves.

We can study the problem by migrating a different version of the test pattern called
interp.su

$ pwd (to make sure you are in your scratch area)

$ cd Temp2

$ cp /scratch/GPGNX61/data/Data2/interp.su .

$ suxwigb < interp.su xcur=3 title="interp data"

$ surange < interp.su

$ surange < simple.su

You will notice that interp.su appears to show the same data as the original simple.su
data, but surange shows that there are 159 traces, instead of the 80 traces that were in
simple.su. The interp.su data were made by using the program suinterp interpolate
the traces in simple.su. The interpolation was done via the command

$ suinterp < simple.su |

sushw key=tracl,cdp a=1,1 b=1,1 > interp.su

The sushw program fixes the header values so that the trace numbers are accurately
represented.

If we run sustolt to migrate the interp.su data and compare this with performing
Stolt migration on the original simple.su data
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Figure 7.3: a) The simple.su data b) The same data trace-interpolated, the interp.su
data. You can recognize spatial aliasing in a), by noticing that the peak of the waveform
on a given trace does not line up with the main lobe of the neighboring traces. The data
in b) are the same data as in a), but with twice as many traces covering the same spatial
range. Each peak aligns with part of the main lobe of the waveform on the neighboring
trace, so there is no spatial aliasing.

$ sustolt < interp.su cdpmin=1 cdpmax=159 dxcdp=20 vmig=2000 tmig=0 |

suxwigb xcur=3 title="interpolated"

$ sustolt < simple.su cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |

suxwigb xcur=3 title="simple data"

then we see that the interpolated data yield a much better image. Please note that
cdpmax=159 and because the data are interpolated, the spacing between traces is
dxcdp=20, which is half of the value used for the previous tests because the interpolation
process put a new trace between every existing trace.

You may rerun the Migtest shell script changing simple.su to interp.su, taking
care to change the input parameters to correctly reflect that the number of traces is 159
and that the spacing between them is cut in half to a value of 20.
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7.12.1 Interpreting the result

We have several ways of interpreting the presence of artifacts in the migrated simple.su
data.

First of all, we may consider the spacing between the arrivals on successive traces to
be so separated that each arrival acts more like a single point input, so the arcs shaped
artifacts represent impulse responses.

Second, we may view the artifacts as representing terminations in the integral that
is implicit in the inverse Fourier transform, that is the actual mathematical operation
of (f, k) migration. So these terminations give rise to endpoint contributions where the
jumps in the data act like discrete limits of integration.

The third interpretation is that the input arrivals are spatially aliased so that the
Fourier transform process thinks that certain high spatial frequencies in the data, are
really low spatial frequency information, and are putting this information in the wrong
place. It is this last interpretation that we would like to investigate further.

7.12.2 Recognizing spatial aliasing of data in the space-time
domain

If we view these two input datasets in detail

$ suxwigb < simple.su xcur=3 title="simple" interp=1 &

$ suxwigb < interp.su xcur=3 title="interp" interp=1 &

by clicking and dragging the rubberbandbox, we can view these datasets in detail. If we
zoom in on traces 10 through 20, and time values 1.05s to 1.15s in the simple.su data
as in Fig 7.3a). In the interp.su data, these correspond to the traces 20 through 40 as
in Fig 7.3 b). The interp=1 allows the wiggle traces to be displayed smoothly at any
scale of zooming.

The spatial aliasing is evident in the simple.su data, because peak of the waveform
on a given trace does not align with the main lobe of the waveform on the neighboring
traces. The data are undersampled in space in simple.su, owing to the the coarse trace
spacing. In real seismic data, great pains are taken to have receiver spacing sufficiently
fine to prevent spatial aliasing. However, there are situations, particularly in the case of
out-of-plane noise events, that noise can be spatially aliased. Furthermore, we may have
missing traces that cause artifacts in migration.

7.12.3 Recognizing spatial aliasing in the (f,k) domain

The term spatial aliasing implies that there is a spatial subsampling which occurs, imply-
ing that there is a wrapping of data in the wavenumber domain. We can see an example
of this in the comparison of (f, k) transforms of simple.su data, with the interp.su data
in Figure 7.4. In Figure 7.4a)and b) the simple.su and interp.su data are shown in
the (f, k) domain. The interp.su data, show a typical (f, k) domain representation of
seismic data.
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Figure 7.4: a) Simple data in the (f, k) domain, b) Interpolated simple data in the (f, k)
domain, c) Simple data represented in the (kz, kx) domain, d) Interpolated simple data
in the (kz, kx) domain. The simple.su data are truncated in the frequency domain, with
the aliased portions folded over to lower wavenumbers. The interpolated data are not
folded.
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As with aliasing in the frequency domain, we see that as we reach the maximum
wavenumber—the equivalent of the Nyquist frequency in the (ω, k) domain, the spectrum
is still nonzero. Typically we like to have data vanish smoothly at the Nyquist frequency
(or wavenumber) to ensure the absence of aliasing without introducing ringing in the
data.

Meaning of the wavenumber domain

But what does the wavenumber domain mean? As we will see in the next section, there
is a relationship between the magnitude of the k vector and the quantity ω/v in data
owing to the wave equation. For zero offset reflection seismic data, we actually have
|k| = 2|ω|/v, were the factor of 2 comes from the fact that we are dealing with 2-way
traveltimes. Thus for our seismic datasets, we would expect the range of |k| values to be

2|ωmin|
v

≤ |k| ≤ 2|ωmax|
v

where ωmin and ωmax are the minimum and maximum frequencies in the data.
We freely trade time t for depth x3 so it should not be a shock that we may consider

the data, not in the (f, k) domain, but rather in a 2D wavenumber domain (k1, k2), where
k1 is the vertical wavenumber and k2 is the horizontal wavenumber. Figures 7.4c)and d)
show the corresponding images that we obtain by making these assumptions, using the
program suspeck1k2 to calculate the 2D spatial transform amplitude spectrum. The
spectrum is symmetric because the data are real valued. The Fourier transform of a real
valued function is always symmetric.

The fan-like shape results because we may identify k vectors with “ray vectors.” The
angular range in the k-domain represents that angular range of rays which illuminated
the reflector in the simple model.

7.12.4 Remedies for spatial aliasing

Fundamentally, spatial aliasing can only be completely avoided if data are sampled suffi-
ciently finely in space to accurately represent all spatial frequencies (alternately wavenum-
bers) in the data. As we have seen above, simply having receivers more closely spaced
significantly reduced the spatial aliasing in our test example. While collecting the data
with fine enough spatial sampling, in the first place, is the best remedy, we may not
always have adequate spacing for all frequencies in the data.

Mathematically we can see how frequency bandwidth corresponds to spatial coverage.
If we write the wave equation[

∇2 − 1

v2(x)

∂2

∂t2

]
u(x, t) = 0.

Here v(x) is the wavespeed of the medium, x = (x1, x2, x3) is position within the medium,
and t is time, and u(x, t) is the wavefield that we want to solve for. This is called the
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Figure 7.5: a) simple.su data unfiltered, b) simple.su data filtered with a 5,10,20,25
Hz trapezoidal filter, c) Stolt migration of unfiltered data, d) Stolt migration of filtered
data, e) interpolated data, f) Stolt migration of interpolated data. Clearly, the most
satisfying result is obtained by migrating the interpolated data.
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“homogeneous form” of the scalar wave equation, because there is no forcing function
(source) on the right hand side. All waves in our medium must be a solution to this
equation.

We assume a trial solution of the form

u(x, t) ∼ A(x)ei(k·x−ωt).

Here, A(x) is the amplitude, ω is the frequency, k = (k1, k2, k3) is the wavenumber
(wavenumber can be thought of as spatial frequency). What we have done is to assume
a simple solution that oscillates both in time and space. Substituting this trial solution
into the wave equation yields[
∇2 − 1

v2(x)

∂2

∂t2

] (
A(x)ei(k·x−ωt)

)
=

[
(ik)2 − (iω)2

v2(x)

]
A(x)ei(k·x−ωt)

+2ei(k·x−ωt)

[(
ik − (−iω)

v2(x)

)
· ∇A(x) +∇2A(x)

]
ei(k·x−ωt)

= 0.

Canceling common terms, and saving only the term with the highest powers in ω and k
we have

−(k)2 +
ω2

v2(x)
= 0

implying that

|k| = |ω|
v(x)

.

Thus when |ω| and |k| are “large”, we have a relationship between |k| and |ω|/v(x) that
tells us that reducing the bandwidth in ω will also reduce the bandwidth in k.

Thus, frequency filtering can be used to combat spatial aliasing, provided that all
frequencies are not spatially aliased in Fig 7.5 there is a comparison with such a frequency
filtered case. The simple data were filtered via the program sufilter

sufilter < simple.su f=0,5,20,25 > simple_filtered.su

to limit the bandwidth. Stolt migration was applied to both the original unfiltered
version of simple.su and the frequency-filtered version. The frequency filtered version
shows much less of the effect of spatial aliasing, but also has lower resolution, which is
to say that the reflector is fatter. This does not seem to be a problem on an image that
has only one reflector, but if there were a bunch closely spaced reflectors, we could easily
lose resolution of these reflectors with frequency filtering.

Dip filtering

The third approach to spatial aliasing is filtering in the (f, k) domain. Because we want
to preserve as much of the frequency content of the data as possible, the filter that we
want to use should preserve the magnitude of the wavenumber vectors in the data, but
restrict the angles so that we suppress aliasing. Such a filter is called a dip filter.

We may experiment with sudipfilt by trial and error
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Figure 7.6: The results of a suit of Stolt migrations with different dip filters applied.
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Figure 7.7: The (k1, k2) domain plots of the simple.su data with the respective dip
filters applied in the Stolt migrations of Figure 7.6
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$ sudipfilt dt=1 dx=1 < simple.su slopes=-2,-1,0,1,2 amps=0,1,1,1,0 |

sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |

suxwigb xcur=3 title="migration after dipfilter" d2=40 &

$ sudipfilt dt=1 dx=1 < simple.su slopes=-4,-3,0,3,4 amps=0,1,1,1,0 |

sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |

suxwigb xcur=3 title="migration after dipfilter" d2=40 &

$ sudipfilt dt=1 dx=1 < simple.su slopes=-5,-4,0,4,5 amps=0,1,1,1,0 |

sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |

suxwigb xcur=3 title="migration after dipfilter" d2=40 &

$ sudipfilt dt=1 dx=1 < simple.su slopes=-6,-5,0,5,6 amps=0,1,1,1,0 |

sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |

suxwigb xcur=3 title="migration after dipfilter" d2=40 &

Dip filtering is less satisfying in this case, because where it works well to eliminate the
spatial aliasing, it also eliminates the dips in the image which constitute the most steeply
dipping parts of the structure. The effect in the (k1, k2) domain may be seen in Figure 7.7.
The resulting migrations of the dip filtered versions of may be seen in Figure 7.6. Where
the spatial aliased noise is suppressed the best, the steeply dipping parts of the syncline
are not imaged at all. Again, we see that trace interpolation is the best option for
suppressing spatial aliasing.

7.13 Lab Activity #9: Dips, imaging, and the k

domain

In the previous section, the term “dip” was used to describe an aspect of the imaging
process. In this section, the relationship between the wavenumber domain and dipping
beds on a seismic section is discussed.

7.13.1 What is “dip”?

In the geologists’ nomenclature the term “dip” refers to the maximum vertical angle that
a rock unit makes with the horizontal direction. For our purposes we recognize that the
dip angle is also the maximum angle that the rock unit’s normal vector makes with the
vertical direction.

Thus, for us dip is the angle that the normal vector to a surface makes with
the vertical at a point on its surface. Thus, every reflector, no matter its shape, is
represented at every point by the normal vector at each of its points.

130



131

7.13.2 What is ”wavenumber”?

We are familiar with the relationship between time and frequency under the Fourier
transform

F (ω) =
∫ ∞

−∞
f(t)eiωt dt

The function F (ω) tells us ”how much” of each frequency ω is present inside the time
varying signal f(t). The units of ω are [time]−1, so that the product ωt that appears in
the exponent is dimensionless.

So, let us consider the spatial transform in 2 dimensions

F̃ (k1, k2) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)e

−i(k1x1+k2x2) dx1dx2.

We can write this in vector notation as

F̃ (k) =
∫ ∞

−∞

∫ ∞

−∞
f(x)e−ik·x dx1dx2.

If we are talking about waves, then the vector k is the “wave vector” or ”wave num-
ber vector”, that points perpendicular to a wavefront for scalar waves. (It gets more
complicated with elastic waves.)

The magnitude of the wave number vector, as discussed in previous sections, is given

by k = |k| =
√
k2
1 + k2

2 = 2|ω|/v where v is some average velocity, and the 2 follows

because we are talking about 2-way traveltimes. The units of k are [length]−1, comple-
menting the units of x = |x| being [length].

The units of the magnitude of the wave number vector are [length]−1, making k a
spatial frequency. But the frequency content of a signal varies between some minimum
frequency ωmin to some maximum frequency ωmax, The range of k is given by

2 |ωmin|
v

≤ k ≤ 2 |ωmax|
v

.

Again, the factor of 2 results from considering two-way traveltime.

7.13.3 What do restrictions of the k-domain do to the data?

Just as in the time-frequency case, a single delta function acting at a point in space will
transform to a constant level in the wavenumber domain. We can imagine applying filters
to that delta function, by restricting parts of the (k1, k2) domain. Most commonly, filters
in the wavenumber domain are annular about the origin, or are pie shaped slices of an
annulus.

Restrictions of the magnitude of k

Here we explore the effects of restricting the magnitude of the wavenumber vector. The
program that will allow us to do this is sukfilter. Our test data will be a single spike
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Figure 7.8: a) Spike data consisting of a single nonzero value, b) Spike data bandpass
filtered, c) k representation of the bandpass filter, d) spike data low-cut filtered, e)
k representation of the bandpass filter, f) spike data low pass filtered, g) k domain
representation of a low-pass filter.
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$ suspike nspk=1 nt=128 ntr=128 ix1=64 it1=64 > single_spike.su

$ suximage < single_spike.su title="single spike" &

This spike data will be filtered by applying different restrictions on the magnitude of the
k vector, resulting in either “pill box” shaped filters, or filters in the shape of an annulus.
One such annular filter is the default setting of sukfilter.

$ sukfilter < single_spike.su |

suximage title="wavenumber domain" label1="k1" label2="k2" &

You will note that the range of wavenumbers always go from −1 to 1 in both k1 and k2.
Thus the wavenumber range is normalized by the Nyquist wavenumber in each direction.
As with frequency filtering we can have low-cut, low-pass, and bandpass filters.

Try, for example a low-cut filter

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=0,1,1,1 |

suspeck1k2 | suximage title=" k-domain low cut" legend=1 &

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=0,1,1,1 |

suximage title="low cut - data domain" legend=1 &

You will note that the range of wavenumbers always go from −1 to 1 in both k1 and k2.
Now try a low-pass filter

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=1,1,0,0 |

suspeck1k2 | suximage title=" k-domain low pass" legend=1 &

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=1,1,0,0 |

suximage title="low pass - data domain" legend=1 &

A bandpass filter

$ suximage < single_spike.su title="single spike &

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=0,1,1,0 |

suspeck1k2 | suximage title=" k-domain bandpass" legend=1 &

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=0,1,1,0 |

suximage title="bandpass" legend=1 &

Dipping plane data

Our test data will be the suplane dipping plane testpattern

$ suplane nt=128 ntr=128 > plane_data.su

$ suximage < plane_data.su title="plane data" &

As in the previous example, we will apply sukfilter to the dipping plane data

$ suximage < plane_data.su title="dipping planes" &

$ sukfilter < plane_data.su k=0,.1,.5,1 amps=0,1,1,0 |

suspeck1k2 | suximage title=" k-domain bandpass" legend=1 &

$ sukfilter < single_spike.su k=0,.1,.5,1 amps=0,1,1,0 |

suximage title="bandpass - data domain" legend=1 &
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Figure 7.9: a) Dipping plane test pattern, b) k-domain representation. The wavenumber
transform of a plane is a vector pointing in the normal direction of the plane.

You will note that the wavenumber domain representation of a dipping plane is
a vector pointing in the normal direction to the original plane.

7.13.4 Dip (slope) filtering

In the previous section we used sudipfilt as a remedy to spatial aliasing. This worked
by rejecting certain slopes in the data that were causing folding in the wavenumber
domain—which is how spatial aliasing exhibits itself in the k-domain.

Here, we study a few examples of k filtering and discuss the ramifications to the
seismic imaging problem. The dip filter that rejects the horizontal is given by

$ sukfilter < plane_data.su |

sudipfilt dt=1 dx=1 slopes=-1,-.5,0,.5,1 amps=1,0,0,0,1 |

suximage title="horizontal plane rejected"

$ sukfilter < single_spike.su |

sudipfilt dt=1 dx=1 slopes=-1,-.5,0,.5,1 amps=1,0,0,0,1 |

suspeck1k2 | suximage title="horizontal reject filter"

You will notice that the part of the wavenumber domain that is rejected is the part
containing the normal vector of the horizontal plane, and that the horizontal plane has
been removed.

We can reject the plane of intermediate dip

$ sukfilter < plane_data.su |

sudipfilt dt=1 dx=1 slopes=0,.5,1,1.5 amps=1,0,0,1 |

suximage title="intermediate dip rejected" &

$ sukfilter < plane_data.su |

sudipfilt dt=1 dx=1 slopes=0,.5,1,1.5 amps=1,0,0,1 |

suspeck1k2 | suximage title="intermediate rejection filter" &
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Figure 7.10: a) horizontal plane rejected, b) horizontal rejection filter, c) intermediate
dip rejected, d) intermediate dip rejection filter, e) steepest dip reacted, f) steeper dip
rejection filter. Dips in black are passed, white are rejected.
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Finally, the plane of steepest dip is rejected via

$ sukfilter < plane_data.su |

sudipfilt dt=1 dx=1 slopes=1.5,2,2.5,3 amps=1,0,0,1 |

suximage title="steepest dip rejected" &

$ sukfilter < plane_data.su |

sudipfilt dt=1 dx=1 slopes=1.5,2,2.5,3 amps=1,0,0,1 |

suspeck1k2 | suximage title="steep dip rejection filter" &

Thus, the wavenumber domain representation of a dipping plane is the normal
vector to that plane.

Dips and images

Figure 7.11: a) Syncline model. b) Syncline model filtered in the k domain to simulate
the “perfect” processed data.

Because the intent of seismic data processing is to modify the seismic data to delineate
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reflectors, we can go in the other direction and process our velocity model to create the
”perfect” processed seismic data, by turning the reflectors into seismic-like waveforms

$ cd Temp2

$ cp /scratch/GPGNX61/data/Data2/MakeSynclineModel .

$ cp /scratch/GPGNX61/data/Data2/syncline.unif2 .

$ cp /scratch/GPGNX61/data/Data2/DipFiltTest .

$ ./MakeSynclineModel

This script is a modification of the XSyncline script. MakeSynclineModel produces
a seismic-like dataset by wavenumber filtering the actual velocity model

#! /bin/sh

# Shell script to build velocity profiles with unif2

# input parameters

modelfile=syncline.unif2

velfile=syncline.bin

suvelfile=syncline.su

n1=200

n2=400

d1=10

d2=10

# use unif2 to build the velocity profile

unif2 <$modelfile method=$i ninf=2 nx=$n2 nz=$n1 v00=2000,3000 \

ninf=1 method=spline > $velfile

# view the velocity profile on the screen

ximage < $velfile wbox=800 hbox=400 n1=$n1 n2=$n2 d1=$d1 d2=$d2 \

legend=1 title="Syncline model" label1="depth m" \

label2="distance m " units="m/s" &

# Make su traces

# here a wavenumber filter is applied to remove zero wavenumber

# sukfrac is applied to make the arrivals look like bandlimited delta

# functions,

suaddhead ns=$n1 < $velfile |

sushw key=dt a=10000 | sukfilter |

sumute key=tracl mode=0 xmute=1,400 tmute=.8,.8 |

sumute key=tracl mode=1 xmute=1,400 tmute=1.4,1.4 |

sudipfilt dx=1 dt=1 slopes=-2,-1.5,-1,0,1,1.5,2 amps=0,.5,1,1,1,.5,0 |

sukfrac power=1 > $suvelfile

# plot in wiggle traces

137



138

suxwigb < $suvelfile title="velocity model, filtered" xcur=1 \

wbox=800 hbox=400 n1=$n1 n2=$n2 d1=$d1 d2=$d2 \

legend=1 title="Syncline model-filtered" label1="depth m" \

label2="distance m " units="m/s" &

# image plot

suximage < $suvelfile title="velocity model, filtered" \

wbox=800 hbox=400 n1=$n1 n2=$n2 d1=$d1 d2=$d2 \

legend=1 title="Syncline model-filtered" label1="depth m" \

label2="distance m " units="m/s" &

exit 0

Here program sukfilter limits the magnitude of the wavevectors, which turns the data
from step-like changes in velocity to bandlimited step functions. A bandlimited step
function looks like a doublet, so to make the resulting waveforms look like sync functions,
we use sukfrac to perform an integration of the waveform. The data are muted with
sumute to remove some noise, and sudipfilt is applied to remove some additional noise.

The result in syncline.su is something that looks like the “perfect” seismic section
that we would hope to obtain from migrating the simple.su data.

We can use syncline.su as a test pattern to try various dip filtering experiments,
allowing us to see the effect of limiting the available dips. We may apply all of the dip
filtering experiments that were applied in the previous section to the simple data to see
the effect on syncline.su. The result is a script called DipFiltTest

#! /bin/sh

# testing Dip Filtering on the Simple model

# run MakeSynclineModel first to make the syncline.su data

sudipfilt dt=1 dx=1 < syncline.su slopes=-2,-1,0,1,2 amps=0,1,1,1,0 |

suxwigb xcur=1 title=" slopes=-2,-1,0,1,2 " \

wbox=800 hbox=400 d2=10 &

sudipfilt dt=1 dx=1 < single_spike.su slopes=-2,-1,0,1,2 amps=0,1,1,1,0 |

suspeck1k2 |

suximage wbox=400 hbox=400 title="slopes=-2,-1,0,1,2" &

sudipfilt dt=1 dx=1 < syncline.su slopes=0,.5,1.0,1.5,2 amps=0,1,1,1,0 |

suxwigb xcur=1 title="slopes=0,.5,1,1.5,2" \

wbox=800 hbox=400 d2=10 &

sudipfilt dt=1 dx=1 < single_spike.su slopes=0,.5,1.0,1.5,2 amps=0,1,1,1,0 |

suspeck1k2 |

suximage wbox=400 hbox=400 title="slopes=0,.5,1,1.5,2" &
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Figure 7.12: a) Syncline model with dips preserved, c) Syncline with left to right trending
dips passed, e) Syncline with right to left trending dips passed. b),c),f) the corresponding
k-domain representation of the filters. Slopes in black are passed, white are rejected.
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sudipfilt dt=1 dx=1 < syncline.su slopes=-2,-1.5,-1,-.5,0 amps=0,1,1,1,0 |

suxwigb xcur=1 title="slopes=-2,-1.5,-1,-.5,0" \

wbox=800 hbox=400 d2=10 &

sudipfilt dt=1 dx=1 < single_spike.su slopes=-2,-1.5,-1,-.5,0 amps=0,1,1,1,0 |

suspeck1k2 |

suximage wbox=400 hbox=400 title="slopes=-2,-1.5,-1,-.5,0" &

exit 0

Each plot shows the dip filtered data and the plot of the dip filter. The part of the
filter plot that is black represents the range of dips that are passed by the filter. These
dips are the values of the wavevnumber vector that represent the normal vectors to the
reflector that are passed.

k vectors as ray vectors

Ray theory, also called “geometrical optics ray tracing,” is an approximate solution to the
wave equation under a high-frequency approximation. Here the term ”high-frequency”
refers to the fact that the wavelengths are short with respect to the structures being
imaging. Under this assumption, wave propagation is seen being composed of packets
of energy with well defined trajectories that pass through the subsurface, reflect off of
jumps in wavespeed, and which are recorded at the surface.

The ramification for seismic imaging is that we must have the range of k-vector
dips that include the normal vectors of the reflectors we seek to image. But
how does this translate into seismic methods? The answer is simple. We identify k
vectors with with ray vectors . We can only image a point in the subsurface if we
can trace a ray from the source and a ray from the receiver to the point, but
only if the source and receiver rays obey the law of reflection.

In more general source-receiver geometries, it is the vector sum of the source and
receiver ray vectors at the imaging point that we identify with the k-vectors in the
wavefield. Thus, imaging occurs when the vector sum of the source and receiver
ray vector co-aligns with the normal vector of the surface at the image point.

7.13.5 Objections to ray theory

It has been the trend of the seismic processing community to eschew an ray-based meth-
ods in favor of methods that continue wavefronts. This is a computational, rather than
theoretical issue. The same high-frequency approximation that makes such geometrical
objects as “rays,” “wavefronts,” and “reflector surfaces” relevant is operative in wavefront
continuation methods.
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7.14 Concluding Remarks

Investigators in oil companies implemented variations of Hagedoorn’s graphical migra-
tion, using notions from the theory of wave propagation and methods from signal pro-
cessing theory. May different types of “migration” were thus created. By accident some
of these methods were “amplitude preserving,” meaning that reflectivity information is
preserved in the image produced by such a migration.

Such “true amplitude” or amplitude preserving migrations became important when
issues of reservoir characterization by seismic methods became important. The first of
these reservoir characterization methods, first discovered in the 1970s was called the
“bright-spot” method, which allowed the identification gas sands in the Gulf of Mexico
by their high-amplitude reflectivities. In reality, all that was done to see the bright spots
was for seismic data processors to stop normalizing away the amplitude differences in
their migrated images. This change marked the beginning of seismic migration as a
parameter estimation tool.

A major issue in seismic imaging is the available range of subsurface dips represented
in the data. These dips are identified with places where the vector sum of the ray from
the source plus the ray from the receiver co-aligns with the normal vector of the surface,
following g the law of reflection. Thus, conventional seismic imaging depends on specular
reflections.
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Chapter 8

Zero-offset v(t) and v(x, z) migration
of real data, Lab Activity #10

Now that you have had an introduction to a few zero-offset migration codes, we will
apply some of these migrations to a dataset consisting of real data. As before, make a
temporary directory in a scratch directory area. Call this one Temp3.

Change directory to your scratch area

$ pwd (should show that you are in your scratch area)

$ mkdir Temp3

$ cd Temp3

$ cp /scratch/GPGNX61/data/Data3/Stoltmig .

$ cp /scratch/GPGNX61/data/Data3/PSmig .

$ cp /scratch/GPGNX61/data/Data3/seismic3.su .

$ cp /scratch/GPGNX61/data/Data3/Suttoz.stolt .

$ cp /scratch/GPGNX61/data/Data3/Suttoz.psmig .

These data were collected over a structure in the North Sea, known as the Viking
Graben. The data were shot by Mobil Corporation back in the 1980s. This is a stacked
section. The data seismic3.su have been gained, have had multiple suppression applied
via supef (Wiener spiking and Wiener prediction error filter deconvolution), have been
NMO corrected (velocity analysis performed with suvelan, and normal moveout cor-
rected via sunmo), dip-moveout corrected with sudmofk, and have finally been stacked
using sustack. The pre-processing is not very good. No migration has been applied.

First we check the header values on the data with surange

$ surange < seismic3.su

2142 traces:

tracl 1 2142 (1 - 2142)

tracr 1 120120 (1 - 120120)

fldr 3 1003 (3 - 1003)

tracf 1 120 (1 - 120)

142



143

ep 101 1112 (101 - 1112)

cdp 1 2142 (1 - 2142)

cdpt 1 120 (1 - 120)

trid 1

nhs 1 60 (1 - 1)

gelev -10

selev -6

scalel 1

scalco 1

sx 3237 28512 (3237 - 28512)

gx 0 28250 (0 - 28250)

counit 3

mute 48

ns 1500

dt 4000

It is convenient to copy and paste this screen into a file called “Notes” for future reference.
We see that there are 2142 traces in the section, that the time sampling interval dt = 4000,
which is to say 4ms sampling, and ns = 1500 samples per trace. We know from the
headers on the original data that the spacing between midpoints, which is to say the
spacing between CMPs, is 12.5m.

You may view the data via:

suximage < seismic3.su perc=99

or

suximage < seismic3.su perc=99 verbose=1

The verbose=1 option will show you the actual clip values that perc=99 is giving you.
You may see what the actual values of bclip (the numerical value of the color black) and
wclip (the numerical value of the color white)

bclip=0.569718 wclip=-0.583124

You may then input clip values. For example

suximage < seismic3.su clip=.2 verbose=1

boosts the lower amplitudes. Try different values clip= to see what this does.

8.1 Stolt and Phaseshift v(t) migrations

The easiest migrations are the Stolt and Phaseshift migrations. It is common to do a
“quick look” at data by applying these types of migrations algorithms. Because a velocity
analysis has been applied to these data, we have a collection of stacking velocities as a
function of time, which we will make use of as an estimate of migration velocity.

If you type
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$ sustolt

$ sumigps

and look carefully at the parameters for these programs, you will see that sustolt requires
RMS velocities as a function of time, whereas sumigps requires interval velocities.
If you look in the shell script Stoltmig, you will see

#! /bin/sh

sustolt < seismic3.su cdpmin=1 cdpmax=2142 \

tmig=0.0,1.0,2.5,3.45,4.36,5.1,5.45,5.95 \

vmig=1500,2000,3160,3210,3360,3408,3600,3650 \

dxcdp=12.5 > stolt.seis.su

exit 0

Here the pairs vmig= are RMS velocities (the velocities that come from velocity
analysis—stacking velocities) for each time value in tmig=. These are only prelimi-
nary velocities taken from a single velocity analysis on the data.

If you look in the shell script PSmig, you will see

$ more PSmig

#! /bin/sh

sumigps < seismic3.su \

tmig=0.0,1.0,2.5,3.45,4.36,5.1,5.45,5.95 \

vmig=1500,2000,3738.45,3338,3876.32,3678.11,5706.7,4156.17 \

dx=12.5 > ps.seis.su

exit 0

Here the pairs vmig= are interval velocities (the actual seismic wavespeeds) for each
time value in tmig=. The conversion of RMS to interval velocities is made through the
application of the Dix equation. In SU, the program velconv is useful for a number
types of velocities, including rms to interval velocities. The program suintvel is useful
for converting a few stacking velocities to interval velocities.

For example, you can run suintvel to convert the stacking velocities as a function of
time, used in the Stoltmig script into the interval velocities used in the PSmig script
via

$ suintvel t0=0.0,1.0,2.5,3.45,4.36,5.1,5.45,5.95

vs=1500,2000,3160,3210,3360,3408,3600,3650
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The resulting velocities given by the value of v= below

h=0,1000,2803.84,1585.55,1763.72,1360.9,998.672,1039.04

v=1500,2000,3738.45,3338,3876.32,3678.11,5706.7,4156.17

The values of h= are the depths corresponding to the times in the t0= field. These
could be used for model building, but are not used in migration. Again, these values are
only preliminary.

If you look inside the shell script Suttoz.stolt

$ more Suttoz.stolt

you will see that the same velocities are used for depth conversion from the Stolt migrated
data (which is in time) to make a Stolt-migrated depth section.

Neither of these sets of velocities should be viewed as “exact”—-these are only prelim-
inary estimates. Notice, for example, that there is no lateral variation in these velocities.
These are only v(t), which implies a v(z), rather than a v(x, z), profile. Yet, a cursory
examination of the data shows a profile that dips to the right, indicating that there is
likely substantial lateral variation of the velocities in the subsurface.

You may run the Stoltmig shell script by typing

$ Stoltmig

or, if you do not have ”.” on your PATH

$ ./Stoltmig

you will see that the output file is stolt.seis.su. You may create a depth section version
of stolt.seis.su by typing:

$ Suttoz.stolt

or

$ ./Suttoz.stolt

if you do not have ”.” on your PATH. The resulting output is the file stolt.depth.seis.su.
You may now plot all three of these files seismic3.su, stolt.seis.su, and the depth

section version stolt.depth.seis.su via

$ suximage < seismic3.su clip=.2 title="Stacked data" &

$ suximage < stolt.seis.su clip=.2 title="Stolt time section" &

$ suximage < stolt.depth.seis.su clip=.2 title="Stolt depth section" &
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8.1.1 Questions for discussion

Compare the original data to the Stolt time migration. Compare how the diffractions
that appear in the stacked data are changed in the migrated sections. Are there artifacts?
What does the shape of the artifacts tell you about the migration wavespeed?

Look for geologic structures in the time migrated data. Compare these to the time
section. Compare the depth section to the time migrated section. Do you see all of the
data in the depth section? Look for geologic structures in the depth section.

Where is the water bottom? Do you see an unconformity? Do you see any faults?
Artifacts? Horst and graben structures? Any suspicious horizons that might be multi-
ples?

Is the migration velocity correct? Too high? Too low?

8.1.2 Phase Shift migration

We may now run the phase shift migration demo script PSmig by typing

$ PSmig

You will first notice first that it takes a bit longer to run the phase shift program than
it did with Stolt. The advantage to phase shift migration is that propagates the field
locally down in depth, so may handle the local variation of the background wavespeed
better. The output of this program is a time section. You may convert this to a depth
section by typing

$ Suttoz.psmig

As with the Stolt migration example, you may view the results via

$ suximage < seismic3.su clip=.2 title="Stacked data" &

$ suximage < ps.seis.su clip=.2 title="PS time section" &

$ suximage < ps.depth.seis.su clip=.2 title="PS depth section" &

8.1.3 Questions for discussion

You may want to compare these images with the Stolt migrations. Ask the same questions
as before. Is the image better in any way? Are there more artifacts, or fewer artifacts?
Has your opinion about the background wavespeed changed?

8.2 Lab Activity #11: FD, FFD, PSPI, Split step,

Gaussian Beam v(x, z) migrations

To create better images, having a migration that uses a background velocity profile that
varies both in horizontal and vertical position v(x, z) is required.
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In the directory /scratch/GPGNX61/data/Data4 we have several shell scripts that
run 5 different types of migration. These are finite difference, Fourier finite difference,
phaseshift plus interpolation, split step, and Gaussian Beam (GB).

All of these were discussed in previous sections, with the exception of GB. The “GB”
stands for “Gaussian beam” and refers to the beam-like approximate wavefield. This
choice of “Green’s function” is often found to be an improvement on standard ray meth-
ods. Gaussian beam migration was invented by geophysicist Ross Hill in about 1990.
Typically, people in the industry usually make a distinction between ordinary Kirchhoff
migration and Gaussian Beam migration, however, Gaussian Beam migration is an ap-
plication of the Kirchhoff migration technique using Green’s functions that are beams
with an amplitude that varies like a bell shaped, or Gaussian function in a cross section
of the beam.

We are going to migrate the same data, seismic3.su so copy the shell scriptsMigtest.fd,
Migtest.ffd, Migtest.split, Migtest.pspi, andMigtest.gb from /cwpscratch/Data4/
to your Temp4 directory via

Change to your scratch area

$ pwd (should show that you are in your scratch area)

$ mkdir Temp4

$ cp /scratch/GPGNX61/data/Data4/seismic3.su Temp4

$ cp /scratch/GPGNX61/data/Data4/Migtest.fd Temp4

$ cp /scratch/GPGNX61/data/Data4/Migtest.ffd Temp4

$ cp /scratch/GPGNX61/data/Data4/Migtest.split Temp4

$ cp /scratch/GPGNX61/data/Data4/Migtest.pspi Temp4

$ cp /scratch/GPGNX61/data/Data4/Migtest.gb Temp4

$ cp /scratch/GPGNX61/data/Data4/newvelxz.bin Temp4

$ cp /scratch/GPGNX61/data/Data4/newvelzx.bin Temp4

where these last two files are background wavespeed profiles for You may view the back-
ground wavespeed profile by typing

$ ximage < newvelzx.bin n1=1500 legend=1

$ ximage < newvelxz.bin n1=2142 legend=1

By now, you should recognize that the model is 1500 samples in depth and 2142 sam-
ples in the horizontal direction. The file newvelzx.bin and newvelxz.bin are merely
transposed versions of each other. The reason both files are needed is that the first 4
migrations to be tested read in the wavespeed profile in constant depth slices, whereas the
Gaussian Beam migration reads the data in vertical slices. This is an oddity of coding,
nothing more.

It will take quite a bit of time to run all of these. In a classroom environment, have
different students run different scripts, so that all scripts are run in a reasonable amount
of time. In each case, simply type the name of the shell script to execute

$ Migtest.fd
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$ Migtest.ffd

$ Migtest.split

$ Migtest.pspi

$ Migtest.gb

Better yet, if you want to get timing information, you may use the Unix time function.

$ time Migtest.fd

$ time Migtest.ffd

$ time Migtest.split

$ time Migtest.pspi

$ time Migtest.gb

Compare your results. The notion of cost must be apparent by now. Some algorithms
are more expensive in computer time than others. If we merely want to have quick looks,
then you cannot beat Stolt migration. However, as more image quality is desire, and
more realistic models of the background wavespeed is desired, then the more expensive
migrations become more attractive.

8.3 Homework Assignment #4 - v(x,z) Migration

comparisons

Run all of the above migration shell scripts and report on the computational cost and
quality of the migrations. Show commands run, make properly labeled plots, and write
brief commentary again, a maximum of 3 pages, in PDF format and email to your
instructor. Which migration gives the best image? Which migration is the fastest?

8.4 Concluding Remarks

It may have occurred to you to ask why so many different migration algorithms exist. In
part, this is cultural. Within company and academic environments, different theories of
migration were explored. Part of this is owing to the business culture. If one company is
supplying a trademarked service, can other companies compete, unless they invent their
own “better” technique? Part of this depends on what we want from the data. Are
amplitudes important, or is it all image quality alone? Which is more important, speed
or accuracy? Time is money, but then an image that fails to direct the driller to the
correct target may be more costly in the long run.

Phase shift and finite difference algorithms are more expensive, but may offer better
images, for the reason that the process may be thought of as wavefront continuation.
Maintaining the continuity of the backward propagating wavefront, should, in theory
make a more physically correct imaging process. Kirchhoff migrations are less computa-
tionally expensive, but these depend on shooting rays or ray tubes. Rays are sensitive to
small variations within a model. If the background wavespeed profile is not sufficiently
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smooth (i.e. twice differentiable) then inconsistencies in the calculated ray field may re-
sult with small variations introducing larger errors. Thus, any cost savings realized may
be done at the expense of improper reconstruction or propagation of wavefronts.

Stolt migration relies on neither ray tracing nor wavefront continuation, but on the
assumption that a stretching and filtering process in the (f, k) domain can accurately
undo the effects of wave propagation on the wavefield, at the expense of never having the
correct background wavespeed. Stolt migration is fast .

Finally, the beginning student learns that “diffractions are bad.” However, if we see a
lot of diffractions, then this means the processing from noise suppression to velocity anal-
ysis to NMO and stack were done well enough to make the diffractions not be obliterated.
In this sense, “seeing a lot of diffractions after stack is good.”
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Chapter 9

Data before stack

So far, all of our data sets have been zero-offset synthetic data and poststack datasets.
We now seek to investigate the world of prestack data. While we will find that prestack
migrations are beyond the capability of the machines in the lab, except for very small
examples, we will find that there are a host of prestack processes that we can apply.
Indeed, most of the “processing” in seismic data processing is on prestack data. We will
find that we will be able to see far more in our dataset than we saw in the examples of
the previous chapter. Often students have the experience of making better images than
published images on our dataset!

As we proceed, students also may notice that we are having more fun, because this
is more like real industry processing, unlike the first few chapters, where our data were
largely test patterns.

9.1 Lab Activity #12 - Reading and Viewing

Seismic Data

For the lab examples that follow make a temporary directory in your working area called
Temp5 area and type

Change to your scratch area

$ pwd (should show your scratch directory)

$ mkdir Temp5

As was discussed at the beginning of these notes, one of the popular seismic data exchange
formats is the SEG Y data format. Data may be in this format on tape media, but today
it is equally common for SEG Y data to be files stored on other media, such as CD, DVD,
or USB disk drive and memory stick devices. These latter media are preferable for easy
transport.

Our test dataset is stored as an SEG Y file called seismic.segy in /scratch/GPGNX61/data/Data5
as a data file in the SU format. This file is big, about 800 megabytes. Make sure that
you are working in an area on your system capable of storing several gigabytes. You may
copy this file to your working area via
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$ cd Temp5 (in your scratch area)

$ cp /scratch/GPGNX61/data/Data5/seismic.segy .

9.1.1 Reading the data

The data are in SEGY format, and need to be read into the SU data data format. This
is done via:

$ cd Temp5

$ segyread tape=seismic.segy verbose=1 | segyclean > seismic.su

Reading seismic data, particularly tapes, is more of an art than a science. If you ever
request data from someone, make sure that you get the data in a format that you can
read. Sometimes it is best to have them send you a small test dataset, before committing
to a larger set.

Seismic processing software, whether commercial or open source, has the property
that there is an internal or working data format that usually differs greatly from the
external or “data exchange” formats that data usually are transferred in. In addition,
there are field data recording formats that differ still from the data exchange formats.
The SU data format is based on the SEG Y format, but is not the same. So, we must
convert our data from the data exchange format to the SU format before we can work
on the data.

9.2 Getting to know our data - trace header values

Once we have converted the dataset to SU format there are many ways to begin learning
about the data. For example we might want to merely view the size of the dataset with
ls -l

$ ls -l seismic.su

will tell us the size of the data. In this case, it also is about 800 megabytes. We may use
surange to determine the header settings, in particular to see if they are correct

$ surange < seismic.su

120120 traces:

tracl 1 120120 (1 - 120120)

tracr 1 120120 (1 - 120120)

fldr 3 1003 (3 - 1003)

tracf 1 120 (1 - 120)

ep 101 1112 (101 - 1112)

cdp 1 2142 (1 - 2142)

cdpt 1 120 (1 - 120)

trid 1
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nhs 1

offset -3237 -262 (-3237 - -262)

gelev -10

selev -6

scalel 1

scalco 1

sx 3237 28512 (3237 - 28512)

gx 0 28250 (0 - 28250)

counit 3

mute 48

ns 1500

dt 4000

Because this takes awhile to run, once you have obtained the output from surange, open
a file name “Notes” with your favorite editor, and copy and paste the screen output from
surange into Notes. We can see such information as the range of header values, see if
the numbers make sense. That sort of thing.

We need to know the total number of traces, the total number of shots, the number
of receivers per gather, the time sampling interval, the number of samples. These are all
things which we will need for further processing

9.2.1 Setting geometry

One of the most time consuming and difficult, and yet, one of the most important steps
in reading seismic data sets occurs in this step of the process. This is called setting
geometry . The process is one of converting field observation parameters recorded in the
field observers’ logs into trace header values. The process itself is often time consuming,
if everything is correct in the logs, but typically there are errors in observers’ logs that
complicate this process. It can take as long as a month to set the geometry in a 3D
dataset!

In SU, the tools for setting geometry are

$ suaddhead

$ sushw

$ suchw

$ sudumptrace

$ suedit

$ suxedit

$ suutm

We may make use of sushw and suchw later in the notes. For the most part, we will
assume that our dataset has had geometry set properly.
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9.3 Getting to know our data - Viewing the data

If we know that our data have the trace headers set correctly the next part of working
with the data is to view subsections of the data to see if there are missing traces, zero
traces, and bad traces. We are interested in the quality and reproducibility of the data
across the section. We are also interested evaluating whether there is noise that may
need to be suppressed.

9.3.1 Windowing Seismic Data

It is always a good idea to look at some small part of the data to see if you have data.
For example is not uncommon to want to look a the first N traces. For example:

$ suwind key=tracl count=1000 < seismic.su |

suximage perc=99 &

gives a quick look at the data. We can see gathers of some variety. To see what kind of
gathers we have (shot versus CMP), the header values will help us. Typing the following:

$ sugethw sx gx offset ep cdp < seismic.su | more

sx=3237 gx=0 offset=-3237 ep=101 cdp=1

sx=3237 gx=25 offset=-3212 ep=101 cdp=2

sx=3237 gx=50 offset=-3187 ep=101 cdp=3

sx=3237 gx=75 offset=-3162 ep=101 cdp=4

sx=3237 gx=100 offset=-3137 ep=101 cdp=5

sx=3237 gx=125 offset=-3112 ep=101 cdp=6

sx=3237 gx=150 offset=-3087 ep=101 cdp=7

sx=3237 gx=175 offset=-3062 ep=101 cdp=8

sx=3237 gx=200 offset=-3037 ep=101 cdp=9

sx=3237 gx=225 offset=-3012 ep=101 cdp=10

sx=3237 gx=250 offset=-2987 ep=101 cdp=11

sx=3237 gx=275 offset=-2962 ep=101 cdp=12
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Figure 9.1: The first 1000 traces in the data.
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....

shows the values of several important header fields. We can eventually figure out that
these are shot gathers by noting which fields change the most slowly. In this case,
the source position sx and the energy point number ep are the slowest changing. Shot
gathers are also called common shot gathers, shot records, and common source
gathers. These terms are used interchangeably.

It is a good idea to get to know your data by flipping through it, much as you would
flip through a coffee table picture book. We can view all of the shot records by using
suxmovie.

$ suwind count=12000 skip=0 < seismic.su |

suxmovie n2=1200 loop=1 sleep=2 perc=99 title="Frame %g" &

It takes a few minutes, but eventually a window will come up, which you can re-size by
dragging on the lower right corner. This window will show a movie of 10 gathers at a
time, with the frame number being shown in the title. You can stop the movie at a frame
by pressing the far right mouse button. You may see the successive 12000 trace blocks
by setting skip=12000, skip=24000, and so forth.

Events with differing moveouts

Stop the movie at any frame, and zoom into view features of the shot gathers. Some
features to look for are multiples. These are repetitions in the data in time caused by
reverberations in the water column. Pegleg multiples may appear to be arrivals with
hyperbolic moveout that show a long time moveout in a gather. Whereas reflections will
have less moveout, indicating higher velocity, but also be hyperbolic in shape. Reflections
that have an hyperbola that peaks away from the shot position will indicate a dipping
bed.

Direct arrivals will tend to have a linear moveout, as will ground roll on land data.
that appears to roll over within the section.

9.4 Getting to know your data - Bad or missing

shots, traces, or receivers

In real data there may be bad traces or missing traces. Some shots may be bad, or there
may be consistent or systematic errors in the data.

9.4.1 Viewing a specific Shot gather

Close the movie window, and capture a particular shot gather for study. For example,
we will capture the shot gather at ep=200, but any will do. This is done via suwind
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Figure 9.2: a) Shot 200 as wiggle traces b) as an image plot.

$ suwind < seismic.su key=ep

min=200 max=200 > shot_ep=200.su

This will take a few minutes. Once you have this shot gather, you may view the data
both as an image plot and as shot gather

$ suximage < shot_ep=200.su perc=99 title="shot ep=200" &

$ suxwigb < shot_ep=200.su perc=99 title="shot ep=200" &

The view of the data is not particularly good, because we have not applied a gain to the
data to take into account the amplitude decay with distance traveled.

9.4.2 Charting source and receiver positions

We may view a chart of the source-receiver positions with suchart. This is done via

suchart < seismic.su |

xgraph n=120120 linewidth=0

label1="sx" label2="gx" marksize=2

mark=8 title="sx gx chart" &

If you zoom in on the plot, missing shots are revealed. Another popular type of chart
called the “stacking chart” is discussed below. The suchart program is useful as a
quality control tool, because any errors in the headers, or inconsistencies in the data are
immediately revealed by the plot of header values.
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9.5 Geometrical spreading aka divergence

correction

The amplitudes of seismic waves experience a reduction in amplitude that is a function of
the distance r that the wave travels. There are two sources of this amplitude reduction.
The first is due to geometrical spreading. The wave energy remains constant, but as the
wavefront expands, the energy density reduces as a function of the increasing area of the
wavefront.

9.5.1 Some theory of seismic amplitudes

For constant velocity solutions to the constant-velocity scalar wave equation[
∇2 − 1

v2
∂2

∂t2

]
U(x, y, z, t, x0, y0, z0) = −W (t)δ(x− x0)δ(y − y0)δ(z − z0)

look like

U(x, y, z, t, x0, y0, z0) =
(

1

4πr

)
W (t− r/v),

where (x, y, z) is the coordinates of a point on the wavefront, (x0, y0, z0) are the coordi-
nates of the source, t is traveltime, v is the (constant) wavespeed, we assume that the
source starts at time t = 0, and

r =
√
(x− x0)2 + (y − y0)2 + (z − z0)2

is the radial distance from the source point to a point on the wavefront. W (t− r/v) is a
waveform traveling at speed v which arrives at time r/v.1

In the real earth, the wavespeed varies with position, so the wavefront surface will not
be a simple spherical shell, it will be a complicated function. There may be focusings and
defocussings due to the velocity variations that cause the wave amplitude to decay by a
function that is more complicated than a simple 1/r. In reality the divergence correction
problem requires modeling wave amplitudes as a function of the velocity model. One
way that this may be done is to consider a tube made of neighboring rays, surrounding
a central ray. The amplitude varies with the cross-sectional area of this ray tube.

Anelastic attenuation

The second cause of wave amplitude reduction is due to anelastic attenuation. Rock may
be thought of as a kind of spring that undergoes distortion in a cyclical fashion as a
wave travels through it. Owing to frictional as well as due to more complicated effects

1The reader may have expected an “inverse square law” from experiences in undergraduate physics
classes, rather than a 1/r law. Energy density does diminish according to an inverse square law, but
because seismic wave energy is proportional to the square of seismic amplitudes, the 1/r amplitude loss
is consistent with an inverse square law of energy spreading.

157



158

involving the motion of fluids in rock pore spaces some of the seismic wave energy is
converted to heat. This failure of the material to behave exactly elastically is is called
“anelastic attenuation.” There is an additional loss of energy due to scattering, which is
called “scattering attenuation.”

The effect of anelastic and scattering attenuation is to reduce wave amplitudes expo-
nentially as a function of the number of cycles that the wave has traveled—distance in
wavelegths, and is usually expressed in terms of a “quality factor” Q. For example in the
frequency domain a decaying solution may be written as

u(x, y, z, ω) =
(

1

4πr

)
w(ω)e−

ωr
vQ

and w(ω) is the frequency domain representation of the waveform represented by W (t−
r/v) above.

To correct for geometric spreading and attenuative amplitude loss, we may apply an
amplitude correction, known as a gain to the data. There are many gaining strategies,
we will discuss a couple of the more common ones.

9.5.2 Lab Activity #13 Gaining the data

One way to do this is to multiply the data by a power of time. This is done via sugain

$ sugain < shot_ep=200.su tpow=1 > gain_tpow=1_ep=200.su

$ sugain < shot_ep=200.su tpow=2 > gain_tpow=2_ep=200.su

and the effect is to multiply each amplitude on the trace by a factor of ttpow.
A simple way of looking at this is that for an average constant velocity of v, the

two-way traveltime is t = 2r/v, where r is the distance the wave has traveled to the
reflector. Hence 1/t ∝ 1/r, and thus 1/r geometrical spreading balanced by multiplying
data by t.

This does not seem to be quite enough owing to the fact that the wavespeed generally
increases with depth. The increasing wavespeed tends to bend the rays, causing the
divergence of the rays to be larger at depth, than a mere 1/r spreading. The presence
of anelastic attenuation further reduces seismic amplitudes in a way that is particularly
noticeable at higher frequencies. Commonly a factor of t2 is a better choice for gaining,
but this may be too much. It may be that the value of the power of t will be a number
1 < tpow < 2.

There are other effects. There may be a general boosting of some amplitudes in such
a way that larger amplitudes increase more than smaller amplitudes. Thus, a global
operation may be needed to rebalance the amplitudes.

One example would be to apply a square root function to the data, which would is
expressed in sugain by the choice of gpow=.5. Finally, there may be isolated amplitudes
that are just too large. These amplitudes may be truncated by clipping the data, thus
the qclip=.95 in the application of sugain above.2

2The term clipping refers to old fashioned paper records. If a wave crest or trough ran off the paper,
it was said to be “clipped,” suggesting it were cut off, as with a pair of scissors.
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In Jon Claerbout’s Imaging the Earth, there is a discussion of a sophisticated applica-
tion of gaining that would be applied in sugain via a choice of parameters that translates
into the options: tpow=2 gpow=.5 qclip=.95. The latter qclip= refers to clipping
on quantiles. (What is a “quantile?”)

This is so useful, that we have a special parameter for this called jon= wherein
jon=1 applies this combination of parameters in sugain. Caveat: Througout this
set of notes jon=1 is used because it is convenient, not because it is optimal!
It is up to the you to experiment with sugain to find the optimal gaining. It
may be that you want to run sugain separately with

$ sugain < shot_ep=200.su tpow=2 gpow=.5 qclip=.95 | suxwigb

and try changing the values of tpow, gpow, and qclip to see the effects of varying these
parameters.

Try to find an optimal setting for the panel. One way of testing your choice is to view
your data with suxgraph

$ sugain < shot_ep=200.su tpow=1.0 | suxgraph

$ sugain < shot_ep=200.su tpow=1.5 | suxgraph

$ sugain < shot_ep=200.su tpow=2.0 | suxgraph

$ sugain < shot_ep=200.su tpow=2.5 | suxgraph

$ sugain < shot_ep=200.su tpow=1 gpow=.5 | suxgraph

$ sugain < shot_ep=200.su tpow=1.5 gpow=.5 | suxgraph

$ sugain < shot_ep=200.su tpow=2 gpow=.5 | suxgraph

$ sugain < shot_ep=200.su tpow=1 gpow=.5 qclip=.99 | suxgraph

$ sugain < shot_ep=200.su tpow=1 gpow=.5 qclip=.99

| suxgraph label1="time (s)" label2="amplitude"

... and so forth

When we plot our data in this fashion, with suxgraph we are overlaying all of the
traces in the gather. The resulting plot shows a crude estimate of the “envelope” of the
waves in the gather by plotting all of the traces on top of one another. The envelope
is a mathematical surface containing the amplitudes but ignoring the oscillation. If we
are successful in removing the decay in amplitude with time, then the amplitude of the
envelope will be more or less constant with time.

The idea is to see which combination of the parameters corrects the geometrical
spreading and attenuative decay with time so that the amplitudes in the trace are roughly
the same for most of the length of the trace. If there are noise spikes or other over
corrected spike events, we use the qclip= to suppress those.

Note that you probably will not need to set perc= on the resulting image if the
gaining is correct.
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Figure 9.3: Gaining tests a) no gain applied, b) tpow=1 c) tpow=2, d) jon=1. Note
that in the text we often use jon=1 because it is convenient, not because it is optimal.
It is up to you to find better values of the gaining parameters. Once you have found
those, you should continue using those.
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9.5.3 Statistical gaining

Another commonly used method is automatic gain control (AGC). The notion of having
some automatic or programmed amplification factor dates from the days of analog record-
ing. Instruments have a maximum range of amplitudes that they can record, known as
the dynamic range of the instrument. It was common that the dynamic range of seismic
recording instruments could not accommodate the full range of seismic amplitudes. If
one were to adjust the instrument so that it could record all of the early larger amplitudes
without clipping, and the smaller, later amplitudes would be lost. Set the instrument for
the smaller amplitudes that come in the later part of the traces and the recording system
would be overwhelmed by the larger amplitudes at the earlier times in the data.

The solution was to use different gains in differing time windows in the data.
AGC takes the rms amplitude of a seismic trace in a succession of windows on each

seismic trace, sums over the RMS value of trace amplitude for each window, and normal-
izes the data within the respective window the by dividing by the sum.

AGC is roughly data driven, but it is somewhat dangerous to use, in that the AGC
function can lose small or large amplitudes, and can introduce artifacts that have more
to do with the window size you use, and less with the real amplitude decay in the data.

There are varying opinions as when to and when not to use AGC. Most commonly
we apply AGC to see if there is anything hiding the later portions of the data.

9.5.4 Model based divergence correction

There is a more sophisticated approach to gaining data, which is to model the actual
geometrical spreading amplitudes by solving the wave equation for the amplitudes. This
requires using a velocity model, and then normalizing the data based on these calculated
amplitude values.

In SU the programs

$ sudivcor

$ sudipdivcor

In modern migration programs, it may be that we don’t want to gain the data, but
that the gaining is part of the inverse process that is being applied to the data. The
correction for geometrical spreading then, is built in to the migration process.

9.6 Getting to know our data - Different Sorting

Geometries

We need not live with our data in the form of shot gathers. By now the reader is aware
of the CMP–NMO–Stack procedure. The data are recorded as shot gathers, and are
resorted to CMP gathers. We may sort data in terms of offset to make common offset
gathers, or by receivers to make receiver gathers , or by any other parameter that we
might want.
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9.6.1 Lab Activity #14 Common-offset gathers

In the early days of seismic prospecting, it was not unusual for surveys to be conducted
of a source receiver geometry consisting of single shot-geophone pairs, collected at a
common (constant) offset between source and receiver. This natural because common-
offset gathers provide data that kind of look like an image of the subsurface—the data
image discussed in earlier chapters.

We view common-offset gathers today as an important data sorting geometry. From
the “Notes” file, we see that the minimum offset in the data is -262 m and the maximum
offset is -3237 m. We can save 3 common offset sections via

$ suwind < seismic.su key=offset min=-262 max=-262

| sugain jon=1 > gain_jon=1_offset=-262.su

$ suwind < seismic.su key=offset min=-1012 max=-1012

| sugain jon=1 > gain_jon=1_offset=-1012.su

$ suwind < seismic.su key=offset min=-3237 max=-3237

| sugain jon=1 > gain_jon=1_offset=-3237.su

Note that we have used jon=1 for convenience. You should use your own values of
tpow=, gpow=, and qclip=. View and compare these respective near, intermediate,
and far offset sections. Note the presence of multiples, and the time resolution on each
section as well as the time of the first arrival representing the water bottom. Indeed,
some operations such as prestack Stolt migration (sustolt and FK and TX Dip moveout
(sudmofk and sudmotx require that the input data be resorted into common-offset
gathers. This is done in SU via:

susort offset gx < seismic.su > seismic_co.su

sugain jon=1 < seismic.co.su > gain_jon=1.co.su

Again, the choice of jon=1 for the gaining is used here for convenience. You should use
your own values of tpow=, gpow, and qclip instead.

9.6.2 Lab Activity #15 CMP (CDP) Gathers

In 1950 geophysicist Harry Mayne patented the Common Depth Point Stacking method
of seismic data enhancement. The idea is simple, sort the data into gathers whose source
and receiver geometry all have the same midpoint in each gather. Correct for the normal
moveout (NMO) and sum (stack). The result should be less noisy equivalent zero-offset
trace. To sort the data, we use susort—a cleverly written program that makes use of
the powerful sorting capability built into the Unix operating system.

9.6.3 Sort and gain

Unfortunately, we cannot reliably use susort in a pipe in all system, so the two step
procedure for sorting and then gaining is required for the full dataset
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Figure 9.4: Common Offset Sections a) offset=-262 meters. b) offset=-1012 meters. c)
offset=-3237 meters. Gaining is done via ... —sugain jon=1 — ...
for convenience. A better gaining of the data is possible.
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$ susort cdp offset < seismic.su > seis_cdp.su

$ sugain jon=1 < seis_cdp.su > gain_jon=1_cdp.su

though here jon=1 should be replaced with the best values for the gaining parameters
tpow= gpow= qclip= that you can find. You will notice that sorting the data is
expensive! You only want to do it once, so saving a CMP sorted version of the data for
future use is a good idea.

File naming convention

Note that the file names are chosen to reflect the processing steps applied to the data
in the file gain jon=1 cdp.su indicates that the file contains “common depthpoint
gathers that have been gained with parameter jon=1.” The convention is not unique
but is convenient as it is easy to forget what processes have been applied to a given data
file. In commercial packages, there is considerable bookkeeping strategies in the form
of auxiliary files, or data trailers that keep the information of what processes have been
applied.

If you are experimenting with gains, sort first, because this is a much more expensive
operation

$ susort cdp offset < seismic.su > seismic_cdp.su

and then do the gain on the sorted data seismic cdp.su.

$ sugain YOUR GAIN PARAMETERS HERE < seismic_cdp.su > gain_PARAMETERS_cdp.su

You will note that we always sort from file to file. (Just to reiterate, SU users have found
that some systems the sorting will fail if susort is used with a pipe —.) Again note the
naming convention.

9.6.4 Viewing the headers

We now have the data gained, and sorted into CMP gathers. (We use the old term
“CDP” here because this term is the one SU uses to designate the CMP header field in
the SEG Y header.)

As before, we can view some header fields in the data

$ sugethw < gain_jon=1_cdp.su sx gx offset ep cdp | more

sx=3237 gx=0 offset=-3237 ep=101 cdp=1

sx=3237 gx=25 offset=-3212 ep=101 cdp=2

sx=3262 gx=25 offset=-3237 ep=102 cdp=3

sx=3237 gx=50 offset=-3187 ep=101 cdp=3
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Figure 9.5: A stacking chart is merely a plot of the header CDP field versus the offset
field. Note white stripes indicating missing shots.
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sx=3262 gx=50 offset=-3212 ep=102 cdp=4

sx=3237 gx=75 offset=-3162 ep=101 cdp=4

sx=3287 gx=50 offset=-3237 ep=103 cdp=5

sx=3262 gx=75 offset=-3187 ep=102 cdp=5

sx=3237 gx=100 offset=-3137 ep=101 cdp=5

sx=3287 gx=75 offset=-3212 ep=103 cdp=6

sx=3262 gx=100 offset=-3162 ep=102 cdp=6

sx=3237 gx=125 offset=-3112 ep=101 cdp=6

...

skipping

...

sx=3637 gx=825 offset=-2812 ep=117 cdp=50

sx=3612 gx=850 offset=-2762 ep=116 cdp=50

sx=3587 gx=875 offset=-2712 ep=115 cdp=50

sx=3562 gx=900 offset=-2662 ep=114 cdp=50

sx=3537 gx=925 offset=-2612 ep=113 cdp=50

sx=3512 gx=950 offset=-2562 ep=112 cdp=50

sx=3487 gx=975 offset=-2512 ep=111 cdp=50

sx=3462 gx=1000 offset=-2462 ep=110 cdp=50

sx=3437 gx=1025 offset=-2412 ep=109 cdp=50

sx=3412 gx=1050 offset=-2362 ep=108 cdp=50

sx=3387 gx=1075 offset=-2312 ep=107 cdp=50

We notice a few characteristics of the data from the header fields. First, it seems that
the cdp field is changing rapidly, but eventually, we see that we have more traces with
the same cdp value. What is happening is that the data do not have full fold on the
beginning of the dataset. We eventually have enough fold to have full coverage in CMP

...

166



167

sx=6037 gx=3800 offset=-2237 ep=213 cdp=265

sx=6012 gx=3825 offset=-2187 ep=212 cdp=265

sx=5987 gx=3850 offset=-2137 ep=211 cdp=265

sx=5962 gx=3875 offset=-2087 ep=210 cdp=265

sx=5937 gx=3900 offset=-2037 ep=209 cdp=265

sx=5912 gx=3925 offset=-1987 ep=208 cdp=265

sx=5887 gx=3950 offset=-1937 ep=207 cdp=265

...

9.6.5 Stacking Chart

As we did in Section 9.4.2 we can use suchart to view the header fields graphically

suchart < seismic.su key1=cdp key2=offset |

xgraph n=120120 linewidth=0

label1="cdp" label2="offset" marksize=2 mark=8

This is effectively a stacking chart, in that it shows the available geophone positions for
each CMP. When data are stacked, they are summed along lines of constant CMP on
this chart.

If we zoom in on this plot, then missing data becomes apparent as gaps in the plot of
header values. The missing shots are distributed over several CMPs and thus the effect
of the missing data is minimized, but not eliminated.

We do not have full fold on the 120 CMPs on the ends of the data. but, you can see
that on low CDP number end of the plot, it is mainly far-offset data that are stacked,
whereas on the high CMP number side of the data it is near-offset data that are stacked.
This accounts for the strange appearance of the edges of the data that we see in stacked
sections.

9.6.6 Capturing a Single CMP gather

Around cdp=265 we are near the ep=200 portion of the data. We can capture this
CMP gather with suwind

$ suwind < gain_jon=1_cdp.su key=cdp

count=120 min=265 max=265 > gain_jon=1_cdp=265.su

which may be viewed as wiggle traces

$ suxwigb < gain_jon=1_cdp=265.su
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Figure 9.6: CMP 265 of the gained data.
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For a better view, we may plot the wiggle traces in true offset, reading the offset from
the header field

$ suxwigb < gain_jon=1_cdp=265.su key=offset &

revealing that there are missing traces due to the missing shots in the data.

9.7 Quality control through raw, CV, and brute

stacks

The term “quality control” or QC is the industry name for what we have been calling
“getting to know your data.” The most widely used method of QC is to perform a series
of CV stacks and maybe a brute stack of the data.

9.7.1 Lab Activity #16 - “Raw” Stacks, CV Stacks, and
Brute Stacks

Another common “quick look” technique is the construction of brute stacks. As the name
suggests, a brute stack is a stack of CMP data with only an approximate NMO correction.
Typically some form of brute stack is used as a field quality control technique.

A Raw stack

For example, we may use sustack to stack the CMP gathers with no NMO correction.
Because industry uses the term “brute stack” with the assumption that some rough NMO
correction as a function of depth is applied, we use the term “raw stack” for the case of
a no-NMO stack of the data. For example try

$ sustack < gain_jon=1_cdp.su | suximage perc=99 title="Raw Stack" &

This will take a few seconds to come up on the screen. Remarkably, we can see the hint
of our structure even in a stack with no NMO correction. So, yes, we have data.

Constant Velocity (CV) stacks: guessed stacking velocities

We can answer other questions, for example we might want to know more about the
multiples? We can NMO correct the data to the water speed of 1500 m/s to view the
multiples type

$ sunmo vnmo=1500 < gain_jon=1_cdp.su |

sustack | suximage perc=99 title="CV stack vnmo=1500" &

We look for repetition in the data. Multiples consist not only of bounces from the first
arrival in the water column, but multiple bounces of many arrivals. The water surface is a
big mirror, and not only are there multiple reverberations of the first arrival, but multiple
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reverberations of all other arrivals, such that potentially the whole seismic section is
repeated, with multiples of early arrivals overwriting the later arrivals. This isn’t simply
a an addition of multiples to the data, but rather multiples become a secondary source,
and the multiples are convolved with the data.

If we choose a number that corresponds to the moveout time for later arrivals, for ex-
ample vnmo=2300, this will will tend to enhance later reflections, though it is apparent
that reverberations dominate the image.

$ sunmo vnmo=2300 < gain_jon=1_cdp.su |

sustack | suximage perc=99 title="CV stack vnmo=2300 "&

Putting it together—a Brute Stack

Suppose that we guess a profile with NMO corrected using vnmo=1500,1800,2300 set at
the at the times tnmo=0.0,1.0,2.0.

$ sunmo vnmo=1500,1800,2300 tnmo=0.0,1.0,2.0 < gain_jon=1_cdp.su |

sustack | suximage perc=99 title="Brute Stack vnmo=1500,1800,2300 &

This choice of velocities focuses both the water bottom and shallow section, as well as
the strong reflector that starts at 2.0 seconds on the left of the section. But note, these
values are really just guesses. Even with a more realistic velocity profile it is clear that
we need to both suppress multiples, and perform velocity analysis so that we can get a
better stack.

9.8 Homework: #5 Brute stacks and gains

Repeat the gaining and raw and brute stack operations of the previous sections (don’t
show the ”raw stack”). Experiment with sugain and the values of tpow=, gpow=, and
qclip= to find gaining parameters that you believe work better to balance the amplitudes
of the data in time. Replace the jon=1 in the examples below with your parameters.

To repeat the brute stacking operations put in the additional windowing step

... | suwind key=offset min=-3237 max=-1000 | ....

to pass only the far-offset data. For example

$ sunmo vnmo=1500 < gain_jon=1_cdp.su |

suwind key=offset min=-3237 max=-1000 |

sustack > stack_far_gain_jon=1_cdp.su

Similarly, stack only the near-offset data, for example

$ sunmo vnmo=1500 < gain_jon=1_cdp.su |

suwind key=offset min=-1000 max=-262 |

sustack > stack_near_gain_jon=1_cdp.su

and compare these results. Perform a similar test for each of the NMO velocity cases in
the previous section. Do we really want to include the near offset traces when we stack?
What is on these traces and why does nmo=1500 accentuate this part of the dataset?
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9.8.1 Are we done with gaining?

The issue of amplitude corrections are complicated. The example in the Homework
assignment above is really a preliminary operation. We can see this by asking what
processes should still be done to the data, and in fact, some of these operations should
be done before gaining.

Muting

Some seismic arrivals should be removed before attempting to gain the data. Muting
out direct arrival energy is one such item. Muting means to zero out the data in specific
ranges of space and time. The SU program

$ sumute

allows the muting operation to be performed.
What do we mute? We mute direct arrivals and the place where direct arrivals

interact with reflections and refracted arrivals at the earliest times of the data. There is
also something called a stretch mute which is the removal of a low frequency artifact of
the NMO correction that is viewed on NMO gathers.

Wavelet shaping

One of the first things that we do to data is to correct for the shape of the wavelet. This
is done by deconvolution. There are a number of tools that we may use to improve the
waveform that involve methods with a variety of assumptions. We discuss some of these
in depth in Chapter 11.

Multiple suppression

As our brute stacks show (particularly stacks with vnmo=1500 that accentuates energy
traveling at or near the water speed), our data are dominated by water bottom and pegleg
multiples. We need to do gaining to make the amplitudes of the multiples more uniform
in order to remove them, but then we must re-gain the data.

Our methods of multiple suppression include predictive deconvolution and filtering in
the tau-p (also known as the Radon or slant stack domain). These are topics discussed
in later chapters. In the industry, a method called surface related multiple elimination
(SRME) is very popular. This method models multiples as the autoconvolution of pri-
mary reflections, permitting the multiples to be modeled and subtracted out, leaving the
data.

Clearly we are not finished, and in fact, we have not really gotten very far yet.

9.9 Concluding Remarks

After Harry Mayne patented the CDP stacking method in 1950 as part of his work at the
Petty Geophysical Engineering Company, oil companies were required to pay a licensing
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fee to Petty to use the technique commercially. The technique of sorting, NMO correcting,
and stacking the data was done with the data in analog form. This required highly
specialized and multi-milllion dollar magnetic drums and magnetic tape devices. Such
operations as NMO and STACK were performed using this unwieldy and tempermental
equipment. The ease and simplicity of applying these operations on digital data, as we
do in lab assignments, was years away. These operations were costly and technically
difficult in the pre-digital era, yet even with only 6 fold stacking, the improvements in
data quality were worth it.

Rather than pay Petty the licensing fee, some companies instead did the common
depth point sorting part but did not do the stack. Instead of stacking the data, some
companies developed high-density plotters such that the traces were effectively plotted
one on top of the other producing a “fat” trace, rather than a stacked trace. (We are
talking 6 fold data, primarily, so there were a maximum of six traces plotted, side by side,
very closely.) Thus, Harry Mayne’s patent encouraged the development of high-resolution
plotting equipment.

Prior to the mid-1970s, deconvolution followed by the CDP-NMO-STACK sequence
was the majority of seismic data processing. Migration was done only on select sections,
or not at all. Seismic interpreters extracted dip and depth information from these stacked
data.
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Chapter 10

Velocity Analysis - Preview of
Semblance and noise suppression

Here, we do a dry run of velocity analysis on a single CMP gather and then do a more
“production level” approach to velocity analysis in the next chapter. Because we use
a preliminary NMO correction to flatten the data as part of the multiple suppression
method, problem of velocity analysis is inextricably linked to the issue of obtaining good
stacking velocities, and to the issue of multiple-suppression. Thus, we will employ an
iterative approach to these operations..

10.1 The NMO semblance analysis method of

velocity analysis

The method of velocity analysis that we use is called NMO Semblance analysis. We
have no way of calculating the seismic velocities directly, but we can use the redundancy
of the data that we have available to us as a means to infer an approximation to the
velocity structure of the subsurface.

10.1.1 RMS velocity and Normal moveout

The velocity function that we infer is an approximation to the root mean square (RMS)
velocity discussed briefly in Chapter 7. The RMS velocity is defined assuming a simplistic
earth model consisting of flat, horizontal, and constant (interval) velocity layers, (Dix
1955).

The RMS velocity at the n-th reflector, is given by

vRMS
n =


n∑

j=1

V 2
j (tj − tj−1)

n∑
j=1

(tj − tj−1)


1/2

,
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where Vj is the interval velocity in the j-th layer.
The method we employ is a brute force application of the normal moveout (NMO)

correction, followed by stacking, and coherecy analysis. We try a spectrum of velocity
functions and find the velocities that stack the data best at each horizon in the data.

For a model consisting of velocity that is not rapidly changing, and for dips that are
essentially horizontal, the NMO equation is approximately

t2 = t20 +
x2

v2RMS

where t is the normal moveout traveltime, x is the offset between source and receiver, t0
is the two-way zero-offset traveltime, and vRMS is the RMS velocity for the given reflector.
The normal moveout correction, which flattens the reflector to the zero-offset traveltime
t0 is

∆t = t0


[
1 +

(
x

t0vRMS

)2
]1/2

− 1

 .

That is, ∆t is the amount that needs to be subtracted from the observed traveltime
that is necessary to convert a hyperbolic moveout to the constant value of its zero-offset
traveltime t0. When applied to the data, this has the effect of flattening the reflected
arrivals in the CMP gather, provided that the values of vRMS are correct.

10.1.2 NMO velocity analysis

We apply the normal moveout correction followed by stack to a CMP gather over a
spectrum of velocities. The result will be a stacked trace for each velocity. A coherency
measuring function called semblance is then applied to each stacked traces. The NMO
velocity and traveltime pairs for which the semblance function peaks are the values for
which the given NMO velocity is most effective at flattening the specific reflector.

Thus, the semblance maxima, represented by “bulls eyes” on the semblance plot,
define the (vNMO, t) pairs that we pick to build our NMO velocity function.

10.1.3 The Semblance Function

In general a semblance function has the form of a sum of squares divided by a weighted
square of sums, each being summed over a moving window chosen for smoothing purposes.

The semblance function most commonly used for velocity analysis is the one defined
by Neidell and Taner (1971). They presented the empirically derived formula for the
semblance value of the i-th sample, si as

si =

i+M∑
j=i−M

[
N−1∑
k=0

qjk

]2

N
i+M∑

j=i−M

N−1∑
k=0

q2jk

.
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Figure 10.1: Semblance plot of CDP 265. The white dashed line indicates a possible
location for the NMO velocity curve. Water-bottom multiples are seen inside the white
oval on the left side of the plot, all with velocity approximately 1500 m/s.. The two
white ovals in the center of the plot contain pegleg multiples. The black oval denotes the
direct arrival, which will be muted out.
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Here, the quantity qjk is the trace amplitude at the time index j and trace number k
of a given NMO-corrected gather having N total traces (also called the “fold”). In the
numerator, the inner sum from k = 0 to N − 1 is the stack of the gather at the j-th
time sample, which is subsequently squared. In the denominator, the inner sum is the
stack of the squares of values of the gather at the j-th time sample. The outer sums on
numerator and denominator represent a simple unweighted average over moving window
in time of length 2M +1. Finally, the value of N in the denominator normalizes the sum
by the number of traces in the gather.

This operation has the effect of balancing the stacked traces by the power of the
traces, suppressing the oscillations of the trace, and smoothing the result.

It should mentioned that there is more than one measurement of coherency that
geophysicists may employ, but this definition of semblance is one of the simpler methods,
and has had a long run of success in the industry.

10.1.4 Example with CDP 265

Let us capture and gain CDP=265, using jon=1 for the gaining function:

$ susort cdp offset < seismic.su > seismic_cdp.su

$ sugain jon=1 < seismic_cdp.su > gain_jon=1_cdp.su

$ suwind key=cdp min=265 max=265 < gain_jon=1_cdp.su > gain_jon=1_cdp=265.su

If you have your version of the data, gained with your own parameters, use that instead.
Now we are ready to try doing velocity analysis using the NMO-semblance method.

The program that does this is suvelan

$ suvelan

Here suvelan starts with a velocity of fv=1450 m/s (slightly less than the water speed),
and sweeps through a spectrum of nv=150 constant velocity NMO functions, in velocities
increments of dv=15 m/s

$ suvelan nv=150 fv=1450 dv=15 < gain_jon=1_cdp=265.su |

suximage d2=15 f2=1450 verbose=1 cmap=hsv2 legend=1 bclip=.3 &

Note that the plotting program is chosen to give a red on blue color map, and the value
of bclip=.3 is chosen to boost the amplitudes on the semblance map. It is easy to make
a semblance map without any apparent “bull’s eyes” if bclip is chosen improperly.

Running this command on gain jon=1 cdp=265.su we can see evidence of mul-
tiples, in that there are repetitions that have something to do with the speed of sound
in water. These need to be suppressed before we can proceed further. We see that the
multiples have slow moveouts. One set of multiples has a velocity that is approximately
the water speed. Another set “shadows” strong reflectors in the subsurface, also tending
to the water speed with each repetition.
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Figure 10.2: CMP 265 NMO corrected with vnmo=1500. Arrivals that we want to keep
curve up, where multiple energy is horizontal, or curves down.

10.1.5 Other uses of NMO and Inverse NMO

In the sections that follow, we find that the process of NMO correction may be used as a
tool to change the slope of our data. We also will make use of inverse NMO . It is possible
to make an approximate inverse of the normal moveout correction, which works for most
of the data. This preprocessing stage with NMO separates the moveouts, so that we may
more effectively discriminate between the multiples that we want to suppress, and the
primary reflections that we want to save.

Thus, we apply a sequence of forward NMO followed by a moveout based filtering
technique, which in turn is followed by an inverse NMO to return the reflected arrivals
to their original moveout. It is important for the reader to be aware that these usages
are not the application of NMO for the final flattening of the data prior to stack.

Note: Even though sunmo may appear as part of the processing sequence,
the end result is that there is no net normal moveout correction applied to
the data at the end of this process.

We can’t really see our data with multiples present, so the method of NMO-semblance
velocity analysis is done iteratively with multiple suppression.
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Figure 10.3: A sketch of the Radon transform process. Data in the space-time domain
are summed over curves, each with an initial slope p at an intercept time τ on the right
side of the plot.

10.2 The Radon Transform, known also as the (τ -

p) Transform, or the slant stack

The Radon transform was invented by mathematician Johann Radon in 1917 as a math-
ematical analysis tool. His idea was to describe functions by their integrals along certain
curves or surfaces.

For us, the Radon transform means that we can take a a seismic gather in coordinates
(t, x) and transform this into a new set of coordinates (τ, p), where the τ represents a
reference time and p is the slowness or time dip of an arrival. This transform was aptly
named the “slant stack” by geophysicists where the “slants” consist of a spectum of
the initial slopes of the lines or curves over which the data are being summed and the
summation is the “stack.”.

Once decomposed, seismic arrivals with differing moveouts can be separated and, with
a bit of luck, suppressed or even surgically removed. Because this is a transform, it is
invertible, meaning that the result of applying the inverse transform will reconstruct the
remaining data faithfully. In a perfect world we would then have multiple-free data.

The way that the process is performed is that a panel of data a reference seismic
trace is chosen. For us, this will be on the trace at the smallest offset. The traveltime on
the reference trace is the τ value. For each τ , a fan of curves is generated, along which
the data on the seismic panel are summed. Each curve in this fan has an initial take-off
angle. This is the respective p-value.

Thus, for each time, τ , on the reference trace, there is sum associated with each slope,
p. The resulting output panel is the Radon transform of the initial seismic panel.

The largest signals result when the transform curves match curves in the data. Thus,
the Radon transform will map curves of differing moveout to differing locations in the
new (τ, p) coordinates.
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Figure 10.4: a) Suplane data b) its Radon transform. Note that a linear Radon transform
has isolated the three dipping lines as three points in the (τ -p) domain. Note that the
fact that these lines terminate sharply causes 4 tails on each point in the Radon domain.

Applying an NMO precondition

We can improve the separation of moveouts that exists between multiples and primary
reflections by applying an NMO correction to flatten arrivals traveling at the water speed.
This makes it easier to apply the next step.

The reader must be warned, however, that at the end off this multiple suppression,
an inverse-NMO will be applied. So the reader must not think that we have done the
final normal moveout correction yet.

10.2.1 A test pattern example of the Radon transform

Consider for example data made by running suplane in the following:

$ suplane ntr=120 nt=256 dt=.004 | sushw key=offset a=0

b=10 | sufilter f=0,5,50,60 > suplanedata.su

$ suximage < suplanedata.su title="suplane data"

key=offset label1="time (s)" label2="offset (meters)"

where we have 3 intersecting linear arrivals. We would like to separate the data in such
a way that will allow us to remove one of the dipping arrivals. The reader may note that
we could use dip or slope filtering in the (f, k) domain to do this. In this case, filtering
in the (f, k) domain might be the best thing, owing to the fact that these are straight
lines.

However for more general curves as we have with moveouts, the Radon transform
that will do a better job of separating arrivals, particularly if the arrivals are curves with
different curvature, such as we see with arrivals having differing moveout.

For example, transforming the suplanedata.su made above into the Radon domain
is done with suradon

$ suradon < suplanedata.su igopt=3 ninterp=4 choose=0 depthref=1000
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interoff=0 offref=1190 pmin=-1000 pmax=1000 > radon.su

$ suximage < radon.su label1="tau (s)" label2="slope index"

title="suplane data Radon transformed"

Here it should be noted that suradon is a complicated program with a lot of options,
so we will approach the problem of using this program cautiously. In this case we use
choose=0 to get a forward Radon transform of the data, igopt=3 to select a linear
Radon transform, meaning that, in this simple example, the curves that are summed
over are straight lines.

The rest of the values make sense if we do

$ surange < suplanedata.su

120 traces:

tracl 1 120 (1 - 120)

tracr 1 120 (1 - 120)

offset 0 1190 (0 - 1190)

ns 256

dt 4000

which shows that the offset ranges between 0 and 1190 meters. Thus, the intercept offset
interoff=0 is on the left hand side of the data panel and the reference offset offref=1190
is the right hand side of the panel.

The pmin and pmax parameters must be chosen to be large enough to encompass
all of the slopes (as measured by maximum times) of interest.

Figure 10.5 shows the result of performing the Radon transform on the data from
suplane. Because the Radon transform is invertible, one or more of the dipping lines,
now represented as points, can be surgically removed, the inverse transform applied, and
the other dipping lines will be unaffected. This is different from dip filtering in that there
is no frequency domain band-limiting effect.

The suradon program does not represent the p values as time-dips but as traveltimes
in milliseconds. There is an advantage to this in that the numbers are easier to work
with than with (fractional) time dips.

Using suradon as a τ-p domain filter

Suppose we had applied NMO to the data, so that the most steeply dipping items were the
items that we wanted to remove. These steeply dipping arrivals correspond to the arrivals
near p = 1000 in the Radon domain. We could perform a Radon transform, surgically
remove this arrival and then perform an inverse Radon transform to reconstruct the data.
Fortunately, the suradon program also works as a filter in the Radon domain.

If we want to get rid of everything for p > 600 then we need merely run the program
again, with choose=1 option, and the values of pmula=600 and pmulb=600. The
values of pmula and pmulb define a line in the (τ, p) domain, to the right of which
values will be suppressed via a smooth filter.

Instead of a Radon transformed dataset, the output this time is the data panel in the
time domain with desired p-values removed.
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Figure 10.5: The suplane test pattern data with the steepest dipping arrival surgically
removed in the Radon domain.
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$ suradon < suplanedata.su igopt=3 ninterp=4 choose=1 depthref=1000

pmula=600 pmulb=600

interoff=0 offref=1190 pmin=-1000 pmax=1000 > filtered.su

$ suximage < filtered.su label1="tau (s)" label2="slope index"

title="suplane data filtered in Radon domain"

The filter in suradon is not a surgical cut, but a smooth amplitude suppression tending
to higher p values. Because the Radon transform is mathematically related to Fourier
transform, the same problem with sharp cutoffs in one domain causing ringing in the
other domain applies here, as well.

10.2.2 How filtering in the Radon domain differs from f − k
filtering

But, so what? We suppressed a dipping arrival. Couldn’t we have done the same thing
with f − k filtering, as we did in Chapter 9? There, the program sudipfilt was be used
suppress the same arrival.

The advantage of the Radon transform is that it need not be applied only to straight
lines, which translate to discrete ranges of dips in the data domain, but over families
of curves, as well. For example, we could apply radon over curves that approximate
moveout curves.

Thus, we can thus attack the differing moveouts between reflections and multiples.

10.2.3 Semblance and Radon for a CDP gather

Our principal sources of multiples come from two sources. The first are simple water-
bottom multiples, which are reverberations in the water layer. The second are called
peg-leg multiples (an allusion to the ray path in the water layer resembling a pirate’s
artificial leg) which are reflected arrivals that have one or more additional bounces in the
water layer.

A crude simulation of our CDP 265 may be made with the MakeFake shell script

Change to your scratch directory

$ pwd (should show that you are in your scratch area)

$ mkdir Temp5 (if you have not done so already )

$ cd Temp5

$ cp /scratch/GPGNX61/data/Data5/MakeFake .

$ more MakeFake

$ MakeFake

$ ls fake*

The files that are generated all begin with the word “fake”.

$ ls fake* (to show all of the fake data files)

$ suxwigb < fake.su perc=99 title="fake data" &
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Figure 10.6: a) Synthetic data similar to CDP=265. b) Synthetic data plus simulated
water-bottom multiples. c) Synthetic data plus water-bottom multiples, plus select pegleg
multiples.
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Figure 10.8: a) Synthetic data in the Radon domain b) Synthetic data plus simulated
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multiples, plus select pegleg multiples in the Radon domain.
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$ suxwigb < fake+water.su perc=99 title="fake + water bottom multiples" &

$ suxwigb < fake+water+pegleg.su perc=99

title="fake + water + pegleg multiples" &

Plots similar to these are shown in Figure 10.6a), b), and c).
Figure 10.6a) shows a synthetic data panel similar to CDP 265 in the Viking Graben

data without multiples. The second panel Figure 10.6b) shows the same data contami-
nated with simulated water-bottom multiples. Finally, simulated water-bottom multiples
plus pegleg multiples from select events are shown in Figure 10.6c) .

We can view semblance plots of each simulated datastes via

$ suvelan nv=150 fv=1450 dv=15 < fake.su |

suximage d2=15 f2=1450 verbose=1 title="fake"

cmap=hsv2 legend=1 bclip=.5 &

$ suvelan nv=150 fv=1450 dv=15 < fake+water.su |

suximage d2=15 f2=1450 verbose=1 title="fake+water"

cmap=hsv2 legend=1 bclip=.5 &

$ suvelan nv=150 fv=1450 dv=15 < fake+water+pegleg.su |

suximage d2=15 f2=1450 verbose=1 title="fake+water+pegleg"

cmap=hsv2 legend=1 bclip=.5 &

Plots like these are shown in Figure 10.7a), b), c) .
In Figure 10.7 a) we see the velocity analysis semblance plot for the synthetic data

without multiples. This would be the “perfect” semblance plot. In Figure 10.7 b) we
see the semblance plot for these same synthetic data contaminated with water-bottom
multiples, which are the arrivals at 1500m/s, the speed of sound in water, arriving at
intervals 0.5s reflecting the two way traveltime in the water layer. The pegleg multiples
are added for select events and the semblance is plotted in Figure 10.7 c). The pegleg
multiples are reverberations spaced at 0.5s, but with decreasing velocity. As we can see,
as the pegleg multiples bounce repetitively in the water layer, their velocity approaches
the water speed of 1500m/s.

We may generate corresponding Radon (i.e.τ -p domain) plots of these data via

$ sunmo vnmo=1500 < fake.su |

suradon offref=-3237 interoff=-262 igopt=2 choose=0

pmin=-2000 pmax=2000 dp=8 depthref=1000 |

suximage perc=99 title="fake"

label1="tau" label2="p"

$ sunmo vnmo=1500 < fake+water.su |

suradon offref=-3237 interoff=-262 igopt=2 choose=0

pmin=-2000 pmax=2000 dp=8 depthref=1000 |

suximage perc=99 title="fake+water"
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label1="tau" label2="p"

$ sunmo vnmo=1500 < fake+water+pegleg.su |

suradon offref=-3237 interoff=-262 igopt=2 choose=0

pmin=-2000 pmax=2000 dp=8 depthref=1000 |

suximage perc=99 title="fake+water+pegleg"

label1="tau" label2="p"

Finally in Figure 10.8 we see the corresponding panels in the Radon (τ -p or slant stack)
domain. The data have been NMO corrected to flatten arrivals traveling at the water
speed. Here everything to the left of p=0 is data that we want to keep. Water-bottom
multiples are flattened to p=0 and pegleg multiples fall somewhere between the data
we want to keep and the water-bottom multiples. A more sophisticated of the NMO
correction can be used as a preprocess to make the parts of the data we want to keep fall
to the left of p=0, while moving items we want to remove to the right of p=0.

10.3 Multiple suppression - Lab Activity #18

Radon transform

As we may see in the synthetics in Figure 10.6, multiples tend to have steeper moveouts,
which is to say that the multiple energy takes longer time to travel the same distance
because a leg of propagation has occurred in the water layer. If we NMO-correct our
data to the water speed, or maybe a speed that is slightly higher, this will tend to flatten
many of the multiples, but cause events that we want to save to curve up. We perform
the NMO correction with sunmo

$ sunmo vnmo=1500 < gain.jon=1.cdp=265.su | suxwigb

You may find that making your wiggle trace plot tall and narrow accentuates the
different moveouts. Anything that travels with the speed of water waves is flattened
with this choice of NMO velocity. Arrivals that have the moveout of reflections are now
curving upward. Anything horizontal, near horizontal, or curving down is something that
we want to suppress. We save a copy of this water-speed NMO corrected data as

$ sunmo vnmo=1500 < gain.jon=1.cdp=265.su > junk.su

We may now apply suradon to transform the data into τ -p domain

$ suradon < junk.su offref=-3237 interoff=-262 igopt=2 choose=0

pmin=-2000 pmax=2000 dp=8 depthref=1000 |

suximage perc=99 label1="tau" label2="p"

Negative values of p correspond to upward curving events, while p=0 is anything that
is flat. Anything curving down, which is to say, having positive moveout, in other words
arrivals that are slower than the water speed, are to the right. The program suradon is

188



189

0

1

2

3

4

5

ta
u

-1500 -1000 -500 0 500
p

CMP 265 in the tau-p domain
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multiples.

189



190

a sophisticated improvement on the traditional τ -p transform. One improvement is that
the p values are given as times in milliseconds on the data, instead of velocities. Also
there are several choices of Radon transform that the user may apply. Here in igopt=2
mode, it sums over hyperbolae rather than mere lines. The p value, then, is the takeoff
angle of a hyperbola. Exactly matching a hyperbola would tend to make a dot at a
particular τ -p pair on the plot. This is an idealized situation. We don’t have the exact
hyperbolae. We can control the shape of the hyperbolae with the depthref parameter
to some degree. You may choose values in the 1000 to 2000 meter range.

What we get are two regimes of curving arrivals. When we flatten our data with a
NMO correction, items with positive p are multiples—these we seek to remove. Items
that are flattened or have negative p, are our our data, which we want to keep.

The suradon has a second mode useful as filter for multiple suppression. We may
select choose = 1 to suppress multiples

$ suradon < junk.su offref=-3237 interoff=-262 pmin=-2000 pmax=2000

dp=8 choose=1 igopt=2 pmula=-800 pmulb=47 depthref=1000 |

sunmo vnmo=1500 invert=1 > junk1.su

The values of pmula=-800 and pmulb=47 define the beginning and ending p values
of the location of the multiples. The program smoothly suppresses items to the right of
the line defined by τ = 6.0 and p = −800 and τ = 0 and p = 47.

The invert=1 causes sunmo to apply “inverse NMO” which is an approximate
inversion of the NMO correction to the waterspeed, back to the original data. Some
muting occurs (in the right place—a lucky accident) as a result of the inverse NMO.

To see what we obtain from the application of this filter

suxwigb < junk1.su title="data after multiple suppression" &

To see what we removed from the data, we run suradon in the choose=2 mode,

$ suradon < junk.su offref=-3237 interoff=-262 pmin=-2000 pmax=2000

dp=8 choose=2 igopt=2 pmula=-800 pmulb=47 depthref=1000 |

sunmo vnmo=1500 invert=1 > junk2.su

which gives us an estimate of what was suppressed in the data,

suxwigb < junk2.su title="multiples that were suppressed" &

A small shell script called “Radon.test” located in /scratch/GPGNX61/data/Data5/
puts all of these together

#! /bin/sh

vnmo=

tnmo=

data=

190



191

pmula=0

pmulb=0

## view nmo corrected data in the Radon domain

sunmo vnmo=$vnmo tnmo=$tnmo < $data |

suradon offref=-3237 interoff=-262 pmin=-2000 \

pmax=2000 dp=16 choose=0 igopt=2 \

depthref=1000 | suximage perc=99 &

## nmo->radon-> inverse NMO: for multiple suppression

sunmo vnmo=$vnmo tnmo=$tnmo < $data |

suradon offref=-3237 interoff=-287 pmin=-2000 \

pmax=2000 dp=8 choose=1 igopt=2 \

pmula=$pmula pmulb=$pmulb \

depthref=1000 |

sunmo vnmo=$vnmo tnmo=$tnmo invert=1 > radon.$data

# view semblance

suvelan < radon.$data dv=15 fv=1450 nv=200 |

suximage d2=15 f2=1450 cmap=hsv2 bclip=.5 &

exit 0

10.3.1 Homework assignment #6 - Beginning multiple
suppression with the Radon transform

• Use ”suwind” to capture a single CDP that is different from cdp=265 that we have
been studying in class:

suwind < gain_YOURPARAMETERS_cdp.su key=cdp

min=NUMBER max=NUMBER > gain_YOURPARAMETERS_cdp=NUMBER.su

(Here for ”NUMBER” is any any CDP number between 300 and 2000). View this
file with suxwigb, examine the headers with surange (You are working with only
one CDP here, remember.)

• Copy the shell script Test.sh to your Temp5 directory.

Change directory to your scratch area

$ pwd (should show your scratch area)

$ cp /scratch/GPGNX61/data/Data5/Test.sh Temp5
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Modify this file to use your gained version of cdp NUMBER

gain_YOURPARAMTERS_cdp=NUMBER.su

file you created in step 1. Run the shell script. Try to find better tnmo= and
vnmo= values than the ones that are in the script to suppress the multiples.

• Show suxwigb (or supswigb) plots (plot with key=offset),of the single CDP
before and after multiple suppression, and show the semblance plot of the data
after multiple suppression.

Because this is a warmup assignment for more complicated applications later on, here
are a few tips and tricks.

1. Make sure you are working with the shell scriptTest.sh located in /scratch/GPGNX61/data/Data5
not the shell scriptRadon.test discussed in the previous section. Test.sh has some
tnmo= vnmo= values already set for you, to get you started. Remember that we
are using the NMO operator as a tool to separate the moveouts of arrivals that we
want to get rid of (the multiples) from the arrivals we want to keep (the primary
reflections). Every application of a forward NMO is followed by an application of
filtering in the radon domain, which in turn, is followed by an application of Inverse
NMO to undo the original NMO.

2. The goal of velocity analysis is to get the ”correct” stacking velocities. In our case,
these values will give us two benefits. We can use these tnmo= and vnmo= for
the preprocess for the radon transform domain filtering, and ultimately we will get
the NMO velocities to stack the data.

3. The idea is to eliminate the multiples by filtering in the radon domain, and then
pick new vnmo= and tnmo= from your semblance plot.

4. How to pick: You can just zoom in on the semblance plot and read values of the
axes. Alternatively, you may pick values by placing the cursor on the place on the
plot that you want to pick. Then type the letter ”s” and the value of a time velocity
pair will be printed in your terminal window. Then edit the shell script to use the
new values and then run Test.sh again.

5. It is helpful to have a wiggle trace plot of your CDP gather on the screen next to
your semblance plot so that you can see what event goes with a given semblance
peak. Is it a multiple or is it a real reflector that is making a given semblance
peak. Update the tnmo= and vnmo= pairs and run Test.sh again to see if the
semblance plot shows fewer multiples. Repeat, until it looks more like a textbook
example of a semblance plot.

6. What to pick: If the NMO velocity is perfect at a particular time, were there is
a reflector, then the semblance plot will have a peak value at that NMO velocity,
and that time.
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7. How to know what values to pick: Imagine the geology. The water speed is 1500
m/s at t=0.0, always. The next peak will be at the top of the unconsolidated
material in the water bottom, it will be about .5 s and will be only slightly higher
than 1500 m/s. We expect that as we go down in depth the velocity will increase
until we are in consolidated material, where it will be higher. Speed generally
increases with depth, though there may be local velocity reductions (hard to see
on semblance). Semblance peaks occur where there are relatively strong reflectors.
Eventually, the velocity will tend to increase slowly. Look in Oz Yilmaz book or in
Hill and Rueger’s notes for an example of ”perfect” semblance plots.

8. What if it doesn’t work? The only thing left to vary is the location of the filter in
the Radon domain. The filter is defined by the values of pmula= and pmulb= in
as used in suradon. The filter is defined by a straight line, with endponts time=0
and the value of pmulb, and time= maximum time on the section and the value of
pmula. In practice we have found that good values of pmulb are between 180 and
240 and good values of pmula are between 5 and 30. Feel free to experiment.

9. Note that the semblance peaks move to the right or the left a bit depending on
where in the radon domain the filter is applied. So, you really need to repick your
velocities after you have changed the filtering. You may need to reduce the value
of bclip= to bclip=.3, say, to make the semblance peaks stand out.

A guide to making better plots

When plotting single gathers, it is best to use wiggle trace plots

$ suxwigb < single_gather.su key=offset title="Plot title"

label1="time (s)" label2="offset (m)" &

or

$ suxwigb < single_gather.su key=offset perc=99 title="Plot title"

label1="time (s)" label2="offset (m)" &

or

$ suxwigb < single_gather.su key=offset xcur=3 title="Plot title"

label1="time (s)" label2="offset (m)" &

and to plot them in true offset using the key=offset option. This option only works for
wiggle trace plots. The third version uses the xcur=3 option, which is the excursion of
the maximum amplitude over the number of neighboring traces.

When plotting larger datasets using image plots, begin by plotting using perc=99
and the legend=1 options

$ suximage < seismic_section.su perc=99 legend=1 ...

The amplitudes given on the legend bar go from -clip value to +clip value. Divide the
clip value in half. Call this number X. Now replot the data using the clip=X instead of
the perc=99 parameter
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$ suximage < seismic_section.su clip=X legend=1 ...

Continue bisecting the clip value X as needed to bring up smaller amplitudes.

10.3.2 We are not finished with multiple suppression and
velocity analysis.

You will notice a that on the near offsets, there are just as many multiples as when we
started. This occurs because at near offsets, all arrivals are almost flat, whether they are
once-reflected arrives from beds, or if they are multiples. Differential moveout methods
are less effective at near offsets.

We may have relief from these multiples using so-called “gapped deconvolution” or
“intertrace muting”. In industry, model-based “multiple elimination” methods, that
employ modeling and adaptive subtraction (SRME) are used.

10.4 Muting revisited

If you plot the multiple suppressed gather from the Homework assignment, you will
notice that values have been zeroed for short times and far offsets. Thus, there are some
“time,offset” pairs that are zeroed out by sunmo and are thus missing after the cascade
of processes that finishes with an inverse NMO.

10.4.1 The stretch mute

When we apply the normal moveout (NMO) correction, there is a radical distortion of
the data called the NMO stretch. To remedy the NMO stretch, an editing of the data
called the stretch mute is applied. You have already applied the stretch mute, but you
were unaware of this.

If you look at the self-doc for sunmo

$ sunmo

SUNMO - NMO for an arbitrary velocity function of time and CDP

sunmo <stdin >stdout [optional parameters]

Optional Parameters:

tnmo=0,... NMO times corresponding to velocities in vnmo

vnmo=1500,... NMO velocities corresponding to times in tnmo

cdp= CDPs for which vnmo & tnmo are specified (see Notes)

smute=1.5 samples with NMO stretch exceeding smute are zeroed

lmute=25 length (in samples) of linear ramp for stretch mute
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sscale=1 =1 to divide output samples by NMO stretch factor

invert=0 =1 to perform (approximate) inverse NMO

upward=0 =1 to scan upward to find first sample to kill

Notes:

For constant-velocity NMO, specify only one vnmo=constant and omit tnmo.

...

you will note that there are two parameters smute=1.5 and lmute=25 which control
the amount of stretch muting and the tapering of the mute. We may run sumute with the
stretch mute parameter turned off by choosing a large number for the value of smute=

$ sunmo vnmo=1500,1800,2300

tnmo=0.0,1.0,2.0 smute=8 < gain.jon=1.cdp=265.su |...

The result is in Figure 10.10. We can clearly see the NMO stretch phenomenon. The
default values of smute= and lmute= work pretty well for most applications, however
if you see long period artifacts on your stacked section, it is possible that you may need
to adjust the values of the stretch mute. Conversely, we do have the possibility of losing
data if the stretch mute is too agressive. In either case the stretch mute may need to be
adjusted.

10.4.2 Muting specific arrivals.

The term muting simply means zeroing out parts of the data that we don’t want. The
items to mute consist of random noise that may appear on the traces before the onset of
the actual arrivals, direct arrivals from the source that have traveled in the water layer,
refracted arrivals also called head waves from the shallower layers of the water bottom,
and wide angle reflections from the shallow layers of the water bottom that may be seen
at longer offsets. These items are undesirable because they do not fit the traveltime
moveout of reflectors, or do not fit with the theory of seismic reflection that we assume
when migrating the data.

10.4.3 Lab Activity #19 – muting the data

Muting is a simple process, we define a curve in the data, such that for those times and
positions, all values at earlier time are simply set to zero. In industry code, the muts
and mute (mute start time and mute end time in milliseconds) is set in the header, but
the values of the data are not zeroed out. However, all subsequent processes will treat
the data as zero between those time values.

10.4.4 Identifying waves to be muted

On any part of the data where the waterbottom has more or less the same sort, we can
create an average of all shot profiles in that area. In the case of these data, the entire
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Figure 10.11: An average over all of the shots showing direct arrivals, head waves, wide
angle reflections, and a curve along with muting may be applied to eliminate these waves.

dataset has a fairly flat waterbottom. We can resort the data so that it is in increasing
offset, with the traces of the same offset side by side

$ susort dt offset < seismic.su > junk1.su

where we have chosen dt as the first parameter because it is a header field that is the
same for every trace. We then can stack the data

$ sustack key=offset < junk1.su > supershot.su

so that each resulting trace is the average of all of the trace at that offset. The effect
is that supershot.su is an average of all of the shot gathers in the data. We may view
the supershot.su by putting some display gain on this with sugain and display with
suxwigb

$ sugain jon=1 < supershot.su | suxwigb key=offset

It is important for picking that suxwigb is run with key=offset so that the horizontal
scale will be in offset.

10.4.5 Applying the mute

On the super shot gather, we may pick (time,offset) pairs to supply to sumute. This
may be done by placing the cursor on the desired point, and typing the letter “s”. The
ordered pair of time and offset will be printed on your terminal window.
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Once the desired times and offsets are obtained, the entire dataset may be muted via

$ sumute < seismic.su tmute=t1,t2,... xmute=x1,x2,... \

key=offset > mute.seismic.su

How to pick mute values and make a ”par” file

You can make this a bit more automated by doing the picks via following:

$ suxwigb key=offset perc=99 mpicks=picks.txt < supershot.su &

and as before, pick values by placing the cursor on the desired location on the plot and
typing the letter “s”. When you are finished type “q” and the picks will be written into
the file picks.txt. You may pick from either side of the plot, but it is easier to see the
first water bottom reflection on the nearest offset trace on the right side of the plot.
You need only pick a few points. The sumute program will linearly interpolate the mute
function across the data. Make sure that the mute function goes from -262 to -3237, so
that you do not miss any traces on the ends of the data.

Now use mkparfile to make a par file for sumute. This is done by typing

$ mkparfile string1="tmute" string2="xmute" < picks.txt > mute.par

Then you would do:

$ sumute < seismic.su par=mute.par key=offset > mute_seismic.su

then you proceed with sorting mute seismic.su into CDP gathers, gaining, and then
performing multiple suppression and velocity analysis.

10.4.6 The shape of the wavelet

It may have occurred to the reader that we have done nothing to ensure that the waveform
is actually optimal for stacking. Seismic signals are assumed to have what is called the
“minimum phase” property, which is to say that most of the energy is located at the
beginning of the wave form. Manufacturers of marine air guns do their best to fit this
prescription, but there are still issues that make real seismic data deviate from this
assumption.

For air guns, there is a reverberation known as a “bubble pulse” which is caused by
a reverberation of the air bubble generated by the air gun. The second problem with
marine data is known as “ghosting.” Ghosting is caused because there is are reflections
off of the water surface at both the source and the receiver that tend to turn the waveform
into something more like a doublet or triplet. Ghosting is evidenced by a notch in the
spectrum of the seismic data.

These deviations from perfect minimum phase are handled by deconvolution. Indeed,
we may also use predictive deconvolution to suppress multiples.
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10.4.7 Further processing - operating on larger parts of the
data

We may consider processing the full dataset with the shell script Radon.final

#! /bin/sh

# input your data sorted in cdps.

# susort < data.su cdp offset > data_cdp.su

data=data_cdp.su

radondata=radon.$data

# the tnmo= and vnmo= values go in a text file called "radon_nmo_vel.par"

# you can use the radon_nmo_vel_x.par file made by Velan.radon here

parfile=radon_nmo_vel.par

interoff=-262

offref=-3237

depthref=1000

# do pmin and pmax need to be this big?

pmin=-2000

pmax=2000

dp=8

igopt=2

lenx=7

xopt=1

# turn of stretch mute, sometimes suradon fails on muted data

smute=20

# The values of pmula and pmulb define the filter in the Radon domain

# the values set here may not be optimal, but are offered as starting values

# we rely on the choice of tnmo= and vnmo= to separate data and multiples

pmula=20

pmulb=200

# filter data in radon domain

choose=1 # data - multiples

sunmo par=$parfile smute=$smute < $data |

suradon xopt=$xopt lenx=$lenx offref=$offref depthref=$depthref \

pmula=$pmula pmulb=$pmulb interoff=$interoff pmin=$pmin \

pmax=$pmax dp=$dp choose=$choose igopt=$igopt |
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sunmo par=$parfile invert=1 smute=$smute > $radondata

# up (don’t use this if there are multiple radon jobs running)

#/bin/rm -f radontmp*

exit 0

It takes several hours (yes, that’s right hours perhaps 5 to 6 hours, maybe longer to run
this process on the full dataset.

We may view the results of the Radon transform multiple suppression by making
an NMO correction to some relevant speed, such as those used in assignment #5 and
stacking to make a brute stack of the data, for example

$ sunmo vnmo=1500,2200,3000 tnmo=0,1,2 < radon_gain_jon=1_cdp.su |

sustack | suximage perc=99 &

If multiples are still prominent, then we may need to perform the τ -p filtering with better
parameters, or we may need to apply different filters to different ranges of CMPs.

10.4.8 The at command: using the computer while you are
asleep

There is a famous adage that you cannot get rich unless you can find a way to make
money while you are asleep. In our case, we don’t efficiently use the computer unless we
can run jobs when we are not physically at the machine, such as when we are at home
or asleep. Such processing jobs are called batch jobs. A batch job is a process that is
submitted for later execution. When computers were first invented, all jobs were batch
jobs.

Batch jobs using the at command

On Unix and Unix-like systems, the at command allows processing jobs to be run at a
pre-specified time by the user, whether or not the user is logged in on the system. The
Unix man page for at

$ man at

shows the basic usage.
Suppose you have a shell script called Myshell located in some directory /mydi-

rectory. If you wanted to run this script in the middle of the night, you could do the
following:

$ cd /mydirectory

$ at 1am tomorrow -f Myshell
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An important point is that you need to have the -f. (Today is 12 October 2017, for this
discussion.) To see if your at job is on the list of jobs to be executed, you would type

$ atq

2 Wed Oct 13 01:00:00 2017 a yourusername

The first number is a number designating a job number, the rest of the fields show the
date and time of execution, and your username on the system.

You are now free to log out, and go on with other tasks. The system will send you an
email message. However, if you have special messages that you want the script to email
you, you might have lines like these in your script

echo "Run completed" |

/usr/bin/mail -s "Status of job " myusername@mymail.mines.edu

Here, the echo command is sending a message to your CSM email address with Subject
line saying “Status of job” and message contents saying “Run completed.” You could
have other information emailed to you. If your script fails, the system will email you
with that information as part of the standard operation of at.

Before using this for anything big, try rerunning the Migtest scripts that you ran
for Homework Problem #4 as at jobs. For example, try running Migtest.gb at 1 am
tomorrow morning

$ cd Temp4

$ cp Migtest.gb .

$ cp newvelzx.bin .

$ cp seismic3.su .

$ at 1am tomorrow -f ./Migtest.gb

Then log out, and check your email in the morning.
Make sure that it works as desired before running bigger jobs. The script should run

as before, and you should get an email with the same screen output that you saw when
you ran this on the commandline in the lab. There will be an error because an at job
cannot open an X-window for suxwigb but everything else should be ok.

To get your email, you may need to have a file called .forward (dot forward) in
your home directory on the lab machines, with your email address (e.g. youruser-
name@mymail.mines.edu) as the single line of text in the file.

Killing an at job

We all make mistakes. Sometimes we launch at that we want to remove. If it turned out
that you changed your mind, and didn’t really want to run the job, you would type:
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$ atq

2 Wed Oct 7 01:00:00 2009 a john

$ atrm 2

where this is the job id number that is in the first line of the atq output.

10.5 Homework Assignment #7

Perform the following operations:

• Mute and perform gaining on your data, make sure your data are sorted into CDPs.

• Break your data in to several parts via

$ suwind < gain.jon=1.mute.cdp.su key=cdp

min=0 max=500 > gain_jon=1_cdp=0-500.su

$ suwind < gain.jon=1.mute.cdp.su key=cdp

min=501 max=1000 > gain_jon=1_cdp=501-1000.su

$ suwind < gain.jon=1.mute.cdp.su key=cdp

min=1001 max=1500 > gain_jon=1_cdp=1001-1500.su

$ suwind < gain.jon=1.mute.cdp.su key=cdp

min=1501 max=2142 > gain_jon=1_cdp=1501-2142.su

Note that the input file is the full dataset, sorted into cdp gathers, gained, and muted.

• Now perform the analysis that you did in Homework #6 to a single CDP taken from
each of these gathers to get tnmo= and vnmo= values for multiple suppression.
You will have a different set of tnmo= and vnmo= values for each subset of the
data.

• Then adapt the shell scriptRadon.final located in /scratch/GPGNX61/data/Data5
to perform the radon multiple suppression on each of these subsets of the data using
the respective tnmo= and vnmo= This part is time consuming, taking several
hours for each part so start early. Note that the tnmo=... and vnmo=.. val-
ues go in a files with names specified on the line in the shell script Radon.final
that starts par=filename. The default filename is radon nmo vel.par. (All SU
programs have a hidden feature that the commandline argument for parameters
can by kept in a file, called a “parfile,” and read into the appropriate program via
par=parfilename).

• You should have at least one of these subsets processed for class next week. Perform
the “brute stack” operation as in homework Homework #5 on that subset, using
your NMO velocities, (but don’t do the near and far offset stacks, just stack the
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full data). For your report, show the semblance plot of the single CDP gather after
multiple suppression, and show the brute stacks of that 500 CDP panel for the data
before and after multiple suppression.

• If you succeed in performing the multiple suppression on all 4 subsets of the data,
concatenate these together to form the full processed dataset via a command of the
form

$ cat radon_gain_jon=1_cdp=0-500.su radon_gain_jon=1_cdp=501-1000.su

radon_gain_jon=1_cdp=1001-1500.su

radon_gain_jon=1_cdp=1501-2142.su > radon_gain_jon=1_cdp.su

(except you would be using your gaining parameters, instead of jon=1). In this
case, your report should show the semblance plot of a single CDP gather and
show a brute stack as in Homework #5 of the full processed dataset and submit
that, instead (but don’t do the near and far offset stacks). Remember to show all
commands and their parameters that perform actual processing steps. (Good for
5 more points. Please note. This is not extra credit. It is an ”obstacle.”
This is a 15 point problem, but not doing the second part will not be
considered an incomplete.)

Hint: making a radon nmo vel.par file

You might want to read about the at command in the previous section, before doing this
assignment.

Another possibility is to make 4 copies of the Radon.final file, each with different
names to reflect the subset of the data they would be processing. Making sure to edit the
inputs (such as having an appropriate radon nmo vel.par (see below) called by each
script. You could then run these scripts simultaneously.

To see what the structure of the radon nmo vel.par file is, note that you put
tnmo= and vnmo= pairs in the radon nmo vel.par file as you would type them
on the commandline. You can also have entries on different lines, and have blank line
separators. One example would be to have for the contents of radon nmo vel X.par
for the entire dataset.

It may be helpful, if you have been saving picks into a picks.txt file to use mkparfile
to make a radon nmo vel X.par file

$ mkparfile string1="tnmo" string2="vnmo" < picks.txt > radon_nmo_vel_par_1.par

tnmo=0,1,2

vnmo=1500,1800,2300

Or if you had a bunch of them for specific CDPs the radon nmo vel.par file would
look like:
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cdp=265,589,1087,1900

tnmo=0,1,2

vnmo=1500,1800,2300

tnmo=0,1.3,2,2.5

vnmo=1500,1900,2300,2350

tnmo=0,1.3,2.2

vnmo=1500,1900,2320

tnmo=0,1.3,2.2

vnmo=1500,1900,2320

It may be, however, that for your 4 blocks of CDPs you need to create 4 separate
radon nmo vel X.par files containing the tnmo= and vnmo= pairs for that partic-
ular block.

These would look like: radon nmo vel 1-500.par:

cdp=265

tnmo=0,1.3,2.2

vnmo=1500,1800,2300

radon nmo vel 501-1000.par:

cdp=589

tnmo=0,1.3,2,2.5

vnmo=1500,1900,2300,2350

and so forth.
Note that the numbers in these examples are totally made up. You don’t have to have

the same number of velocity-time pairs in each par file. Within a pair you have to have
the same number of times as velocities, but the pairs themselves can have differening
numbers of velocities reflecting the values you pick from the semblance.

10.6 Concluding remarks

Our discussion of velocity analysis and multiple-suppression by the radon transform here
is just a warm-up for a more “production level” treatment in Chapter 12.

Obviously, there are many issues that come into play when performing velocity anal-
ysis. We do velocity analysis for multiple suppression, but we also are doing velocity
analysis for stacking. We do not know a priori what the correct NMO velocities are, so
there is an iterative aspect to the process. Once we have suppressed the multiples we
may recognize that our gaining is not very good and we likely need to regain the data and
pick NMO velocities again. Remember also, that we should have muted certain arrivals
at the beginning of all of these operations.

Finally, there is the issue of time. Time is money. We cannot afford to be perfection-
ists! There is a line that has to be drawn. We must not expect more out of our data
than we have a right to expect, but we must also not give up too easily.
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Chapter 11

Spectral methods and advanced
gaining methods for seismic data

There is a class of methods that are best called spectral methods because they modify
the amplitude and/or the phase spectrum of the data. There are several reasons for
performing such operations. We may find that there is high or low frequency noise that
may be present in the original data, or such noise may be introduced by processing tools
that we apply. We also desire to suppress multiples, and the third is to sharpen the
waveform. We are interested in sharpening the wavelet to more clearly define reflection
arrivals for both velocity analysis and for image resolution. Another issue is the process
of correlating vibrator profile data with the vibrator sweep as a prelude to processing.

Some of these techniques are clearly filtering operations, wherein a particular filter
is convolved with the data. Other techiques are best thought of as a deconvolutional
processes, that is to say, a process by which data are “inverted” in some sense, to re-
move a particular response. We may think of both operations as being related, in that
deconvolution is a convolution with an inverse of a signal. Thus deconvolution is also a
“filter.”

There are many such methods that have been developed over the decades since digital
data processing was first introduced into to exporation geophysics in the mid to late 1950s,
but we discuss here only a small subset of these to give you a general idea of what to
expect in a commercial environment.

We apply many of these operations prior to velocity analysis, or in conjunction with
velocity analysis, or as a prelude to migrating the data.

11.1 The convolutional model

Geophysicists have realized a tremendous benefit from a simple concept. That is the
concept called the convolutional model of seismic wave propagation. Because the
wave equation is a linear partial differential equation, the simplest way of looking at all
processes involving the wave equation is to consider the processes as being something
called a linear system.
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Figure 11.1: Example of a far-field airgun source signature

The common metaphor is that of a “black box.” That is, we are assuming that a
geophysical process is an unknown system with an input and an output, but the only
other thing that we know about the that we assume it behaves in a linear fashion. That
is, we assume that the output coming out of this “black box” comes from a process that
depends linearly on the input.

The traditional geophysical view of data is therefore that a signal S(t) is the result of
a linear process. Thus S(t) composed of a source waveform W (t) convolved with a series
of spikes, called the reflectivity series , each scaled by the refection coefficient Rk of the
k-th reflector, plus a noise function N(t)

S(t) = W (t) ⋆ R(t) +N(t).

11.2 Common assumptions of spectral method

processing

Seismic data result from the introduction of seismic energy into the subsurface followed
by the subsequent recording of reflections, either on the surface of the earth or in a
well bore. Such data have a natural frequency band and a natural phase spectrum.
We may seek to change some of these characteristics as part of processing, but we have
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common assumptions about our data that we make, or that we impose on the data as a
precondition for further processing.

The seismic source may have a time history that makes it appear complicated. For
example, a marine air gun signature may have a bubble pulse that follows some time
after the main signal, see Figure 11.1. Because we may think of all reflections as re-
sulting from a convolutional process involving this source wavelet, complications in the
source waveform may cause the reflections to appear unduely complicated. Modern air
gun sources are extremely complicated collections of air gun elements, with complicated
directionality and spectra, so there may be directional issues, as well.

Another waveform complication in ocean seismic surveys results from a phenomenon
called ghosting. In addition to the direct arrival from the source, there is an additional
arrival that originates from a reflection path that begins at the source, bounces off of the
water surface, and then travels into the subsurface. Similarly, in addition to the direct
reflection from the subsurface, the receiver may record an additional signal that has first
traveled to the ocean surface. These ghost reflections are not merely added to the data,
they are also convolved with the data.

Yet another source of data complication are multiples. These include reverberations
in the water column, with waves bouncing between the sea surface and the sea bottom.
This is not just the first reflection from the sea bottom, but can include reflections from
the sedimentary layers just below the sea bottom, and from strong reflectors throughout
the section. These secondary reverberations are called pegleg multiples (named for a
pirate’s artificial limb). While it may be tempting to think of multiples as being merely
added to the data, these too act as secondary sources and are thus convolved with the
reflectivity series.

Finally, there may be ambient noise which is added to the data. This can include
cultural noise, or natural noise from such sources as wind. In ocean surveys noise from sea
creatures or from ships, including the ship that is dragging the towed airgun/hydrophone
array. There is a low frequency noise called “swell” that results from water wave action.
There may be oscillations of the hydrophone streamer that contribute to the noise, as
well.

To deal with these issues, we apply deconvolutional methods. To apply such methods,
we make some physically reasonable simplifying assumptions. These are causality, the
minium phase (minimum delay), and the white spectrum assumptions. Underlying all
of this is the assumption that seismic wave propagation is a linear system, which, in its
simplest form is the convolutional model.

11.2.1 Causality

If the source is an explosion or a pulse from an airgun, or even a sweep from a vibrator,
the resulting data have the property that they are causal, which is to the say that the
wavelets have a definite beginning time. Causality means that there can be no signal
before time zero, or in the case of propagating arrivals, there can be no arrivals before the
shortest traveltime determined by the velocity function for the medium. This, of course,
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is a basic principle of physics and should not be a surprise.
Many processes that change the frequency spectrum may also distort the the wave-

form resulting in signals that may appear later than the time predicted by the wavespeed.
Sometimes we deliberately change the phase characteristics of the wavelets in the data
as to make the wavelet symmetric about the expected arrival time, thus giving the ap-
pearance that energy is coming in a bit earlier than the predicted arrival time.

Such signals are called zero-phase waveforms. If the data are then processed to appear
to be similar to sinc functions, which is to say, symmetric zero-phase signals, the desire is
that the reflectors will occur at times of the peaks of these “bandlimited delta functions.”

11.2.2 Minimum phase (aka minimum delay)

A signal which has a definite time of beginning and also has the majority of its energy
in the beginning part of the waveform is called a minimum phase (aka minimum delay)
wavelet. We consider any “front-loaded” signal to be, or to approximately be, a minimum
phase waveform. In addition such a wavelet must be causal, and stable, meaning that it
can be inverted without a singularity.

11.2.3 White spectrum

The term “white spectrum” is an allusion to the notion of white light being composed
of a full visual spectrum of frequencies. For seismic data, many processes that we apply
would become unstable if amplitudes at particular frequencies were to be zero or near
zero. For deterministic processes the instability comes from division by zero or by division
by a small number, as might be encounted by performing deconvolution in the Fourier
transform domain. For statistical processes which are viewed in some sense as matrix
operations, the issue is to introduce a perturbation that moves the system away from the
null space of the matrix in the representation.

We know that all data are bandlimited so the remedy is simple. We include a small
“white noise” term that will prevent this instability. The expense is that all such oper-
ators will introduce noise. Generally, frequency filtering is a remedy for this noise issue.
Such a white-noise parameter is usually a small number multipled by the maximum of
the autocorrelation, so it is proportional the largest value of the power spectrum.

11.2.4 Operations

There are four operations that are the working tools of digital signal processing. These
are convolution, cross-correlation, autocorrelation, and deconvolution.

What does “linear” mean and why is it good?

In the experience of mathematical physics, many processes can be described by or may
be approximated by linear ordinary or partial differential equations. The short answer
of why linear is good, is that linear makes the mathematics easier.
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If multiply the input to a linear system by a scalar then the output is scaled by the
same value. If we shift the input to the black box, the output is shifted by the same
amount. That’s it.

Furthermore, linear systems have a property called the principle of superposition.
This means that new solutions of a linear system may be formed through the linear
combination of previously determined solutions. This fact allows transform theory to
be applied. That is, we may use invertible mathematical transformations to decompose
input functions into a family of simpler functions, apply the linear system to these simpler
functions, and then add up the results to yield the output for the full function.

Green’s functions, impulse responses, and transfer functions

A result known as “Green’s theorem” tells us that if we have a particular solution called
the “Green’s function” of the linear system, which is to say the output of the linear system
given the input of a Dirac delta function, we may form all possible solutions through the
convolution of a given input with the Green’s function. The Green’s function is also
known as the “impulse response” or the “transfer function.” (In modern mathematical
usage the term ”fundamental solution” is often seen.) This is a feature of the principle
of superposition which says that linear combinations of existing solutions of a linear
system are also solutions to the same system.

11.3 The three mathematical languages of signal

processing

There are three formulations that are useful in signal processing. These are the continuous
function, the Z polynomial , and the linear algebra (matrix and vector) representations.

The continous function representation is made via the Fourier transform. Formally
we can write signals, wavelets, and filters as contiuous functions, and apply processes
analytically through the evaluation of integrals. The processes of convolution and de-
convolution are represented respectively as multiplication and division in the Fourier
transform domain, and the result in the time domain is the inverse Fourier transform of
the Fourier domain result.

The Z-transform representation replaces all functions with polynomials. This formu-
lation has many of the same properties of the frequency domain representation. The
signal processing operations are applied by polynomial multiplication, addition, or divi-
sion.

Finally, we can represent digital data operations as matrix-on-matrix, or matrix-on-
vector multiplications. Thus operations are represented as the multiplication of a vector
by a matrix, by a matrix inverse, or vector addition.

All of these are equivalent.
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11.3.1 The Forward and Inverse Fourier Transform

The most common operation for representing a given function in terms of simpler func-
tions is the Fourier transform. This operation decomposes a given signal into appro-
priately scaled sines and cosines, represented only by the Fourier coefficient and the
frequency of the respective sine or cosine.

The formal representation of the forward Fourier transform is

F (ω) =
∫ ∞

0
f(t)eiωtdt (11.3.1)

and the inverse Fourier transform is

f(τ) =
1

2π

∫ ∞

−∞
f̂(ω)e−iωτdω. (11.3.2)

Here exp(iωt) = cos(ωt) + i sin(ωt). In the first expression, the function f(t) is decom-
posed into a function f̂(ω) which represents the value of the sine or cosine function for
the specific frequency value ω.

The inverse transform sums up the sine and cosine functions for each frequency,
scaled by the value of f̂(ω), yielding the original function f(τ) back. The input variable
t is distinguished from the output variable τ here in anticipation that we may apply
operations known as “filters” in the ω-domain. Some of these operations may change the
time on the output.

We can use this definition of the forward and inverse Fourier transforms to formulate
the operations of convolution, cross correlation, and autocorrelation.

11.4 Convolution, cross-correlation, and

autocorrelation

There are three related operations that are encountered in signal processing. These are
convolution, cross-correlation, and autocorrelation.

11.4.1 Convolution

The formal definition of convolution is given by the continuous integral relation

F (t) ⋆ G(t) =
∫ ∞

−∞
dτF (τ)G(t− τ). (11.4.1)

This is not a “definition” but a relation that arises naturally when solving boundary
value problems using Green’s theorem. If we replace F and G by their inverse Fourier
transform definitions, we obtain the result that

F (t) ⋆ G(t) =
1

2π

∫ ∞

−∞
f̂(ω)ĝ(ω) exp(−iωt)dω, (11.4.2)

which means that convolution is multiplication in the frequency domain.
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Figure 11.2: a) Amplitude spectra of the traces in CMP=265, b) Amplitude spectra after
filtering.

11.4.2 Lab Activity #19: Frequency filtering

Here we consider simple frequency filtering as well as more exotic weighted filtering. This
text certainly cannot give a comprehensive treatment of this broad topic.

11.4.3 Simple frequency filtering

The simplest, yet one of the most important spectral methods is simple frequency filtering.
If we look at the spectra of the traces in CMP gather 265

$ suspecfx < gain_jon=1_cdp=265.su

| suxgraph title="spectra"

title="spectra" label1="frequency"

label2="amplitude" &

we see that the data have most of their frequency spectral values between 5 Hz and 80
Hz. The rest can be considered to be noise, which could be boosted and distorted by
futher processing steps. When engaging in signal processing the old computer science
adage ”garbage in garbage out” it is often amplified to ”small garbage in, a lot of garbage
out.”
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Applying simple frequency filtering with sufilter we see in the frequency domain

$ sufilter < gain_jon=1_cdp=265.su

f=0,5,70,80 amps=0,1,1,0 | suspecfx

| suxgraph title="spectra"

title="spectra" label1="frequency"

label2="amplitude" &

that the data are truncated. Note that it is up to the user to figure out the full range
of frequencies in the data that are to be kept. It may take some experimentation with
further processing steps to find the correct filter range.

The program sufilter applies only simple tapered zero-phase filters to the data. There
is another class of filter known as “Butterworth” filters, which in SU may be performed
via the program subfilt. Butterworth filters are described by a solution a class of ordinary
differential equations. Such filters were originally applied as analog preprocessing during
the time of data acquisition.

Are we done with frequency filtering? Often, not. Other spectrum modifying pro-
cesses, as well as other transforms we may use, may introduce noise into the output. We
may need to apply our simple bandpass filter again owing to these noise sources.

11.4.4 Lab Activity #20: Spectral whitening of the fake data

It may have occurred to the reader after seeing the spectra of the real data that it may
be of benefit if the spectra of the traces were flat, instead of having the many peaks and
valleys apparent on the plots. The process of normalizing the amplitude spectrum of
a signal is called spectral whitening. We expect that such an operation would tend to
sharpen data, but with the caveat that we know it will also sharpen the noise, making
everything more “spike-like.” (Indeed, using this technique is a bit like performing brain
surgery with an icepick. Care should be taken in applying this for more than educational
purposes.)

The basic idea is simple. We take the data into the frequency domain, and consider
the representation of the data d(ω) as a complex-valued function

d(ω) = |d(ω)|eiϕ(ω).

We then multiply the amplitude |d(ω)| by a function 1/|d(ω)|, taking care not to divide
by zero, so that |dnew(ω)| = 1. This may be over the full range of 0Hz to the Nyquist
frequency, or over some partial range. We then inverse Fourier transform the data. This
operation is guaranteed to change the relationship between the amplitude and the phase
function, as

d(ω) = dr + idi,

where dr is the called the real part of d and di is the called the imaginary part of d. Here,
the amplitude is given by the modulus of d as

|d| =
√
d2r + d2i
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Figure 11.3: a) Original fake data b) fake data with spectral whitening applied. Note
that spectral whitening makes the random background noise bigger.

and the phase by

ϕ = arctan

(
di
dr

)

We can experiment with spectral whitening in SU using the command suwfft (a
“weighted” Fourier transform). This program gives the user the choice of whitening,
from moderate to extreme. The plots labeled “traditional” use the default settings of the
program, which are not really full spectrum whitening.

For example

$ suwfft < fake.su w0=0 w1=1 w2=0

| suifft | suxwigb xcur=2 title="fully white spectrum"

$ suwfft < fake.su

| suifft | suxwigb xcur=2 title="traditional spectral whithening"

and

$ suwfft < gain_jon=1_cdp=265.su w0=0 w1=1 w2=0

| suifft | suxwigb xcur=2 title="fully white spectrum"

$ suwfft < gain_jon=1_cdp=265.su

| suifft | suxwigb xcur=2 title="traditional spectral whitening"
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show us what this does to our data. The data are sharpened, but then so is the noise.
Another test is to apply spectral whitening to our CMP 265 data. Recall that fre-

quency filtering may need to be applied before and after the whitening process. We see
that the spectrum is an idealized white amplitude spectrum whose shape is the filter

$ sufilter f=0,5,80,90 < gain_jon=1_cdp=265.su |

suwfft w0=0 w1=1 w2=0 | suifft | sufilter f=0,5,80,90

| suspecfx | suxgraph title="Spectrum after whitening" &

$ sufilter f=0,5,80,90 < gain_jon=1_cdp=265.su |

suwfft | suifft | sufilter f=0,5,80,90

| suspecfx | suxgraph title="Spectrum after whitening" &

and though it appears to be a single curve, these are really 55 identical spectra on on
top of the other, for each of the 55 traces in our gather.

The spectral whitening process involves the cascade of forward and inverse Fourier
transforms. Owing to zero padding in these transforms, there may be more samples per
trace on the output than on the input, so an extra step of windowing the data with
suwind in time is required

$ sufilter f=0,5,80,90 < gain_jon=1_cdp=265.su |

suwfft | suifft | sufilter f=0,5,80,90 |

suwind itmin=1 itmax=1500 |

| suxwigb title="data after traditional spectral whitening" &

(Don’t forget the suifft step!) The windowing passes samples from sample 1 through
sample 1500 on each trace. As with our fake data, the real data have additional arrivals.

Troubleshooting spectral whitening

Some users may find that there are difficulties with applying later processing steps on
data that have been spectrally whitened via bf suwfft/suifft. To prevent further problems
and additional processing step should be applied. Note that

$ surange < whitened_cdp=256.su

55 traces:

tracl 11827 11881 (11827 - 11881)

tracr 11827 11881 (11827 - 11881)

fldr 76 130 (130 - 76)

tracf 1 119 (1 - 119)

ep 174 233 (233 - 174)

cdp 265

cdpt 1 119 (1 - 119)

trid 1

nhs 1
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offset -3237 -287 (-3237 - -287)

gelev -10

selev -6

scalel 1

scalco 1

sx 5062 6537 (6537 - 5062)

gx 3300 4775 (3300 - 4775)

counit 3

mute 48

ns 1584

dt 4000

d1 0.004000

Note that the number of samples ns is now 1584 and the d1 field has been set. To
return our data to its original length and header values do:

sushw key=d1 a=0 < whitened_cdp=256.su | suwind itmin=0 itmax=1499 > fixed.su

The fixed.su data once again has the 1500 samples per trace and the d1 field is no
longer set.

We can run Radon.test on versions of the data after spectral whitening has been
applied. Observe the changes in the semblance plots after spectral whitening. It may be
that we would prefer to use spectral whitening after multiple suppression.

Caveats regarding spectral whitening

Should we run spectral whitening? The type of spectral whitening we discuss here is
a brute force modification of amplitudes, which will certainly introduce noise into the
output. Frequency filtering likely will be needed to remove frequency information that
is totally fabricated by the spectral whitening process. We run spectral whitening (and
spiking deconvolution) to improve resolution of velocity picks and to make reflectors
sharper. To the end that the tools do that job, we may apply them. You definitely need
to experiment with the operation to see if it helps.

Even if we do not deliberately attempt to whiten the spectrum of our data, we may
find that other operations have this effect, and that we have to apply frequency filtering
to repair the damage to our data caused by this process.

11.5 The Discrete Representation of Seismic Data

In the past section, we discussed the application of filters that modify the spectrum of
the input seismic signal. Though we are implementing the operations on sampled data,
we study these operations with a continuous function representation of the processes that
are being applied to formlulate each technique.
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We find, however, that the act of digitizing a signal introduces its own peculiarities.
Also, recall that any digitized signal may be normalized by its largest value, and that
absolute value of a reflection coefficient is not greater than 1.

11.5.1 The Forward and Inverse Z-transform

If we take the (causal) Fourier transform of our reflectivity series R(t), we obtain a series
in terms of shifted complex exponentials

R̂(ω) =
∫ ∞

0
R(t)eiωt dt =

∫ ∞

0

N∑
k=0

Rkδ(t− τk)e
iωt dt

=
N∑
k=0

Rke
iωτk =

N∑
k=0

Rke
iωk∆t

where we note that the time sampling interval is a constant ∆t such that τk = k∆t.
If we define ϕ = ∆t. The “Z” in Z-transform is this shifted complex exponential,
Z = exp{iω∆t} = exp{iωϕ}. The ”transform” is the transformation of a this sampled
data into a polynomial in Z. This polynomial is called the Z-transform representation
of R(t)

R(Z) =
N∑
k=0

RkZ
k.

We can, of course, assign the coefficient of the k-th term by inspection. All we have to
do is to multiply the k-th term of our sequence digital value with Zk and add up the
resulting terms to form the k-th order polynomial in Z. For a Z-transform representation
of a finite number of terms this is all we need to know.

The advantage of this representation is that we have effectively taken the Fourier
transform of our initial digitally sampled data with no calculation.

The Z-transform representation inherits the property that convolution and deconvo-
lution of signals is represented as multiplication and division, respectively of the trans-
formed data, as we see with Fourier transformed data.

More mathematics

In the discussion that follows, any sequence that is discussed is normalized by the largest
value, which is why the unit circle is referred to so much.

For an infinite series, such as we might obtain through a Taylor expansion of a function
or through a process of long division, as in the case of the geometric series, we must also
specify a region of convergence, which is a circle in the complex plane. Poles of the
function represented by the series lie outside the circle of convergence, while zeros may
be found either inside or outside the circle of convergence.

Digital signals are finite length, so there is no issue of convergence, but there is an
issue of where poles and zeros of the Z-transform representations a function lie.
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11.5.2 The inverse Z-transform

We can use the properties of the residue theorem from complex variables to get our
original sequence of digital values back. The inverse Z-transform has to have the form

Rk =
1

2πi

∫
C
R(Z)Zk−1 dZ, (11.5.1)

for each term where the contour C encloses the origin.
We can see why this is so by considering that for Z = exp{iωϕ} and for C being a

circular contour enclosing the origin. Simply substituting for Z and noting that dZ =
iZdϕ

I =
∫
C
Z−1 dZ = i

∫ 2π

0
e−iωϕeiωϕ dϕ = 2πi,

which shows where the division by 2πi comes from.
The other possibility is to consider for n ≥ 0

I =
∫
C
ZndZ = 0.

This integral vanishes by Cauchy’s theorem because the integrand is an analytic function
of Z. The contour integral in equation (11.5.1) sifts through the each term of the series
representation of R(Z) and returns the original discrete value for each value of n, giving
us our original series of digital samples back.

Of course, we do the inverse Z-transform by inspection, just taking the coefficient of
each term of the Z-polynomial is the n-th sample.

The inverse Z-transform is effectively the inverse Fourier transform, as long as the
contour C is the unit circle |Z| = 1.

11.6 Deconvolution

We have another way of whitening the spectrum. This method is to deconvolve the data.
This may be either a deterministic process, where an estimate of the wavelet is obtained,
and is divided out of the data in the frequency domain. More commonly we apply
deconvolution via a statistical estimate of the wavelet, which is based on the assumption
that the data are minimum phase (aka minimum delay), under an error minimization
criterion. Thus we assume that our entire data consists of spikes convolved with minimum
phase (aka minimum delay) wavelets.

Before launching into the application of minimum phase (aka minimum delay) decon-
volution, we discuss the operations that we will be applying to data in general mathe-
matical terms.

So where is the phase minimized?

As we know, anytime that some one uses the term “minimum” there must be a process
where a quantity is differentiated, and the result set to zero. This is an example of phase
minimization.
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The most general Z-transform representation of a function is a rational function, that
is, the function is a ratio of two Z-polynomials,

f(Z) =
(a0 − Z)(a1 − Z) · · · (an − Z)

(b0 − Z)(b1 − Z) · · · (bm − Z)
.

Here the ratio has been written out showing the respective zeros (the ak values) and the
respective poles (the bk values) of the function.

The definition of minimum phase requires that f(Z) is causal, invertible, and stable.
The formal definition of minimum phase says that all of the poles and zeros of f(z) must
inside the unit circle ||Z|| = 1. We allow that the ak and bk values may be normalized
so that the largest value of either of these is 1.

Why this is so may be illustrated with a simple example. We consider the function
f(Z) = 1− aZ. Here a = |a| exp(iϕa) and Z = exp(iω∆t). We can write this as the sum
of a real part and an imaginary part,

f(Z) = 1− |a| exp i(ϕa + ω∆t)

= 1− |a| cos(ϕa + ω∆t)− i|a| sin(ϕa + ω∆t)

We need the phase (also called the argument) of f(Z), ϕ = Arg (f(Z)), which is the arc
tangent of the ratio given by the imaginary part divided by the real part:

ϕ(ω) = Arg (f(Z)) = tan−1

(
−|a| sin(ϕa + ω∆t)

1− |a| cos(ϕa + ω∆t)

)
.

We want to minimize ϕ(ω), which means that we want to differentiate this expression
with respect to ω and set it equal to zero. The derivative of the arctangent is given by

dϕ

dω
=

d

dω
tan−1 (V (ω)/U(ω)) =

V ′U − V U ′

U2 + V 2
,

where U = 1− |a| cos(ϕa + ω∆t) and V = −|a| sin(ϕa + ω∆t).
Performing the operations and setting ϕ′(ω) = 0, we find that

|a| = cos(ϕa + ω∆t).

the minimum exists whenever 0 < ϕa + ω∆t < π/2 making |a| < 1. Thus, |a| is inside
the unit circle.

The calculation for the denominator is similar. The zero becomes a pole for a function
g(Z) = 1/(1− bZ). The minimization is the same with the only exception being that the
sign flips on ϕ(ω). This has no effect on the minimization, so we find that the poles are
also inside the unit circle.

11.6.1 Convolution of a wavelet with a reflectivity series

The simplest model of a seismic trace is to consider the notion of the reflectivity series.
The idea is simple. The world is assumed, to first order, to consist of simple reflectors,
each with its own arrival time and its own reflection coefficient Rk for the k-th reflector.
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Seismic waves are represented as rays that travel from the source to each reflector
and back, taking τk for the two-way traveltime. In this ideal world, we have only single
scattering, so there are no multiples (yet).

The simplest seismogram that could be recorded would then be a collection of spikes
of each of a respective height Rk, having values which could be positive or negative,
arriving at the respective time τk

R(t) =
N∑
k=1

Rkδ(t− τk)

where Rk is the reflection coeficient of the k-reflector and δ(t − τk) is the Dirac delta.
We may think of this Dirac delta as a spike that only “turns on” when t− τk = 0 and is
“turned off” (zero) the rest of the time.

This series is called the reflectivity series—a popular notion in exploration seismology.
If we want to make a seismogram, then we would convolve a wavelet W (t) with the
reflectivity series to form a seismogram. Note that when we write the reflection
coefficient of the k-th reflector, we write that as Rk, but when we write the
k-th sample of the digitized reflectivty series R(t), we write Rk.

A remarkable result of digital signal processing is that the process of digitizing a
signal yields the Z-transform of a function. Simply stated, the Z-transform of a signal is
polynomial representation of the discretely sampled signal with the k-th sample multipled
by the factor Zk.

Thus, without taking expensive Fourier transforms, we are able to per-
form convolution and deconvolution of digital data by serial multiplication of
digital representations, often making digital data processing in the time do-
main inexpensive. This “serial multiplication” is the multiplication of the Z-transform
polynomial representation of the given functions.

The division of polynomial representations would then be deconvolution. As with
division in the Fourier domain, the issue of avoiding division by zero also critical in the
Z-transform representation of deconvolution.

Minimum phase in Z-transforms

In the world of digital signal processing in geophysics, we are dealing with causal func-
tions. This means that there is a specific beginning time for signals. We also have the
issue of where the energy is in the signal.

We call waveforms that are “front loaded” or contain most of their energy at the
beginning of the wavelet “minimum phase” (aka minimum delay) signals,

Such a Z polynomial could be of some degree m but it might be that only the first
few terms of the Z polynomial representing the wavelet are of importance, the rest could
be near zero, which is to say that the low degree terms in the Z-transform contribute the
most.
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11.6.2 Convolution with a wavelet

Our digital data are convolved with a wavelet given by W (t)

D(t) = W (t) ⋆ R(t)

=
∫ ∞

−∞
W (τ)R(t− τ)dτ

=
1

2π

∫ ∞

−∞
s(ω)w(ω)e−iωtdω

(for this discussion we ignore the noise term N(t).) Thus, recorded data D(t) is the
convolution of a wavelet W (t) with the reflectivity series R(t). The last line shows the
Fourier transform domain form of convolution. Convolution is multiplication in the
frequency domain.

Convolution of Z-transform representations

In the language of Z-transforms, convolution of two signals is the multiplication of the
two polynomial representations in Z of the functions, making this an easy algebraic
operation.

11.6.3 Deconvolution

Deconvolution then is the inverse process, which is to say, the process of removing the
effect of a waveform, to produce a desired output.

Symbolically, we have recorded data D(t) with a particular waveform W (t) possibly
distorting the arrival time of a given reflection. What we want ideally is to reconstruct
the reflectivity series by applying the inverse process

R(t) = W−1(t) ⋆ D(t).

We need only determine what the “inverse of W (t)” given by W−1(t) is. If we write this
out in the Fourier domain representation, then we see that

R(t) = W−1 ⋆ D(t)

=
∫ ∞

−∞
W−1(t1)D(t− t1)dt1

=
1

2π

∫ ∞

−∞

D(ω)

W (ω)
e−iωtdω.

Thus, we see that deconvolution is division in the frequency domain.
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11.6.4 Deconvolution of functions represented by their
Z-transforms

In terms of Z-transforms, we would then be dividing the polynomial representation of
the signal by the polynomial representation of the wavelet. The zeros of the Z-transform
polynomial become poles in the deconvolution result, which, if were were performing the
inversion by contour integration would be the contribution to the contour integral.

11.6.5 Division in the frequency domain - Deterministic
deconvolution

There is a problem, however, when we consider the Fourier transform as a spectrum.
If the function is zero over a range of values in the frequency domain (as opposed to
isolated zeros in the Z-transform) in the Fourier transform form of the wavelet given by
the function w(ω), then deconvolution is unstable or undefined. This follows because
division by a small number introduces computational instability, and of course, division
by zero is not defined.

We recall that w(ω) is a complex valued function, which may be written in complex
exponential form as

w(ω) = |w(ω)|eiωϕ(ω)

or as the sum of real and imaginary parts as

w(ω) = wr(ω) + iwi(ω).

We define the complex conjugate of w(ω) as

w̄(ω) = |w(ω)|e−iωϕ(ω)

or as the sum of real and imaginary parts as

w̄(ω) = wr(ω)− iwi(ω).

If we multiply w(ω) by its complex conjugate, we have the square of the modulus of w(ω)
as above

|w(ω)|2 = w(ω)w̄(ω).

Returning to our deconvolution problem, multiplying top and bottom of the integrand
by w̄(ω), we have

R(t) = W−1 ⋆ D(t)

=
1

2π

∫ ∞

−∞

w̄(ω)d(ω)

|w(ω)|2
e−iωtdω.
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We still haven’t solved the problems of division by zero in w(ω) because if w(ω) has
a zero, then so will |w(ω)|. We solve this problem by adding a small number ε to the
denominator

R(t) = W−1 ⋆ D(t)

=
1

2π

∫ ∞

−∞

w̄(ω)d(ω)

(|w(ω)|2 + ε)
e−iωtdω.

The quantity ε is the noise or whitening or white noise parameter. This parameter is
chosen to be small enough to stabilize the inverse, but not so big as to skew the results,
and, as such is scaled by the maximum of the observed autocorrelation. Thus, formally
we can define the inverse waveform W−1(t) by its Fourier transform representation

W−1(t) =
1

2π

∫ ∞

−∞

w̄(ω)

(|w(ω)|2 + ε)
e−iωtdω.

It is important to remember that no matter how a deconvolutional process
is performed, we think of deconvolution as division in the frequency domain.
All deconvolution schemes must then have the equivalent of a white noise parameter to
stabilize the division process, by preventing division by a small number or by zero.

Deterministic deconvolution in SU - sucddecon

In SU the program sucddecon performs deconvolution by a direct division in the fre-
quency domain, given an input waveform as the sufile=filename.

$ sucddecon

SUCDDECON - DECONvolution with user-supplied filter by straightforward

Complex Division in the frequency domain

sucddecon <stdin >stdout [optional parameters]

Required parameters:

filter= ascii filter values separated by commas

...or...

sufile= file containing SU traces to use as filter

(must have same number of traces as input data

for panel=1)

Optional parameters:

panel=0 use only the first trace of sufile as filter

=1 decon trace by trace an entire gather
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pnoise=0.001 white noise factor for stabilizing results

(see below)

sym=0 not centered, =1 center the output on each trace

verbose=0 silent, =1 chatty

...

For example, if we use the far field air gun signature in Fig 11.1 as our input waveform
we can apply succdecon to deconvolve a panel of our data with this waveform. Here we
deconvolve cdp 265

$ sucddecon sufile=farfield_gun.su < gain_jon=1_cdp=265.su |

suxwigb title="deterministic deconvolution" key=offset perc=99 &

which looks rather bad. We can see that there have been frequencies manufactured by
the filtering process, so applying a bandpass filter

$ sucddecon sufile=farfield_gun.su < gain_jon=1_cdp=265.su |

sufilter f=5,10,70,80 |

suxwigb title="deterministic deconvolution" key=offset &

we obtain a more acceptable result.
Note also, that the value of the pnoise= parameter can make a big difference. The

value here may be slightly low. (Don’t be afraid to experiment with numbers that are
10 to 100 times bigger to see what adjusting this parameter does.) Here is the command
using the default value of pnoise=.001

$ sucddecon sufile=farfield_gun.su < gain_jon=1_cdp=265.su |

sufilter f=5,10,70,80 |

suxwigb title="deterministic deconvolution" key=offset &

The process is called signature deconvolution if we have a source signature for each
shot. There are techniques to perform wavelet estimation that yield approximate source
wavelets that can be used to perform signature decon. Similarly, the response of each
receiver may be estimated and removed by deconvolution.

11.7 Cross- and auto-correlation

A related mathematical operation to convolution is the cross correlation. The cross-
correlation of two functions is the multiplication of one function by the com-
plex conjugate of the other in the frequency domain. Here we represent the
cross-correlation by the symbol “xcor,” which for digital data is the serial multiplication
of the discrete representations of A(t) and B(t). We write this as in the Fourier domain
as

A(t) xcor B(t) =
1

2π

∫ ∞

−∞
a(ω)b̄(ω)e−iωtdω.

=
1

2π

∫ ∞

−∞
ā(ω)b(ω)e−iωtdω.
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Figure 11.4: Deterministic decon of CDP 265 using the farfield airgun signature estimate
from Fig 11.1
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We can see that the auto-correlation is the product of a function with its own
complex conjugate in the frequency domain.

A(t) xcor A(t) =
1

2π

∫ ∞

−∞
a(ω)ā(ω)e−iωtdω.

Thus the frequency domain representation of the autocorrelation of our waveform is
given by the |w(ω)|2, which appears the denominator of the frequency domain form of
the deconvolution, and in the Fourier transform representation of inverse wavelet W (t).

Whether deconvolution is performed in the time-domain, or in the frequency domain,
the common elements of the auto-correlation, the ε noise or whitening parameter,
and the wavelet W (t) are present.

11.7.1 Z-transform view of cross-correlation

Given the Z-transform representations of two signals B(Z) and A(Z)

A(Z) =
N∑
k=1

akZ
k and B(Z) =

N∑
l=1

blZ
l

we represent the complex conjugate B̄(Z) as the same series, but with terms represented
by the negative powers of Z

B̄(Z) =
N∑
l=1

blZ
−l.

The cross-correlation of A(Z) and B(Z) is then the product of the polynomials

A(Z)B̄(Z) =

(
N∑
k=1

akZ
k

)(
N∑
l=1

blZ
−l

)
.

The effect is to flip the order of the B(z) series in the multiplication to the opposite order
as would be done with convolution.

11.7.2 Cross correlation and auto correlation in SU suxcor
and suacor

$ suxcor

SUXCOR - correlation with user-supplied filter

suxcor <stdin >stdout filter= [optional parameters]

Required parameters: ONE of

sufile= file containing SU traces to use as filter

filter= user-supplied correlation filter (ascii)
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Optional parameters:

vibroseis=0 =nsout for correlating vibroseis data

first=1 supplied trace is default first element of

correlation. =0 for it to be second.

panel=0 use only the first trace of sufile as filter

=1 xcor trace by trace an entire gather

ftwin=0 first sample on the first trace of the window

(only with panel=1)

ltwin=0 first sample on the last trace of the window

(only with panel=1)

ntwin=nt number of samples in the correlation window

(only with panel=1)

ntrc=48 number of traces on a gather

...

$ suacor

SUACOR - auto-correlation

suacor <stdin >stdout [optional parms]

Optional Parameters:

ntout=51 odd number of time samples output

norm=1 if non-zero, normalize maximum absolute output to 1

sym=1 if non-zero, produce a symmetric output from

lag -(ntout-1)/2 to lag +(ntout-1)/2

11.8 Lab activity #20: Wiener (least-squares)

filtering

There is a class of deconvolutional processes known as Wiener filters or prediction error
filters , which have been found to be useful in exploration seismic methods. The method
is called “predictive” because it assumes that the data have a specific character that
allow later parts of the data to be predicted from earlier parts of the data.

Wiener filtering assumes that the data are minimum phase (aka minimum delay).
While there is a requirement that the spectrum of the data is white, a small “noise”
parameter is added or assumed in the algorithm to prevent division by zero. Physically,
if a waveform is minimum phase (aka minimum delay) its energy is located in the front
part of the waveform.
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11.8.1 A matrix view of the convolution model

The convolutional model of seismic waves holds that the data D(t) are formed by the
convolution of a wavelet W (t) with a reflectivity series R(t). Symbolically this is
represented as

D(t) = W (t) ⋆ R(t) , (11.8.1)

where

R(t) =
N∑
k=0

Rkδ(t− τk).

Here δ(t − τk) is the Dirac delta function, which turns on only at time τk, the two way
traveltime to the k-th reflector, and Rk is the reflection coefficent (either positive or
negative) of the k-th reflector.

As an integral, the convolution of the reflectivity series R(t) with the wavelet W (t)
is defined as

D(t) = W (t) ⋆ R(t) =
∫ ∞

−∞
W (t− τ)R(τ)dτ.

The discrete version of this operation can be written as

Dn =
N∑

k=−N

Wn−kRk.

Note how the integration variables in the continuous version correspond to the indexes
in the discrete version.

We can write this numerically as the matrix multiplication

WR = D (11.8.2)

whereW is a band matrix, whose rows are composed of shifted versions of a discrete repre-
sentation of the wavelet W (t) = {w0, w1, w2, ...}, the reflectivity series R(t) = {r0, r1, ...},
and the data D(t) = {d0, d1, ...}.



w0 w1 w2 ... 0 0 0 0 0 0
0 w0 w1 w2 ... 0 0 0 0 0
0 0 w0 w1 w2 ... 0 0 0 0
0 0 0 w0 w1 w2 ... 0 0 0
0 0 0 0 ... ... ... ... 0 0
0 0 0 0 ... ... ... ... 0 0
... ... ... ... 0 w0 w1 w2 ... 0
... ... ... ... ... 0 w0 w1 w2 ...
... ... ... ... ... ... 0 w0 w1 w2





r0
r1
r3
...
...
...
...
...
...
...
...
...
rn



=



d0
d1
d3
...
...
...
...
...
dm


. (11.8.3)
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We want to solve for R, but W is, in general, a non-square (m × n) matrix. Our
solution is the pseudoinverse or least-squares solution. We multiply by the transpose of
W, which we write as WT, we obtain

WTWR = WTD (11.8.4)

where ideally the solution for D is given by taking the inverse of WTW, yielding

R = (WTW)−1WTD. (11.8.5)

For stability εI is added to the WTW to yield the final form

R = (WTW + εI)−1WTD. (11.8.6)

As written, this expression describes a mathematician’s view of the problem, but this
form is not really practical to implement.

If we go back a step
WTWR = WTD (11.8.7)

The right hand side of the contains WTD which is the cross-correlation of the wavelet
W with the recorded data D. This is a spiked version of the data. The quantity W TW
is the matrix of autocorrelations of the wavelet. The quantity WTD is a vector of
bandlimited spikes, whose heights are proportional to the reflection coefficients. If the
original data have no multiples, then the cross-correlation of the wavelet with the data
will be a band-limited “spiked” version of the reflectivity series and would be a form of
“spiking deconvolution”. Again, we are less satisfied with this because we do not have
the wavelet W needed so we can compute WTD.

The left hand side of the expression contains WTW, which is a matrix whose rows
are composed of the autocorrelation of the wavelet, shifted successively by one sample
on each row

W TW =


ϕ0 ϕ1 ϕ2 ... ϕn−1

ϕ−1 ϕ0 ϕ1 ... ϕn−2

ϕ−2 ϕ−1 ϕ0 ... ϕn−3

... ... ... ... ...
ϕn−1 ... ... ϕ−1 ϕ0

 . (11.8.8)

Here, ϕ−(n−1), .., ϕ−1, ϕ0, ϕ1, ..., ϕn−1 is the autocorrelation of the wavelet W (t). We note
that this is symmetric such that ϕ−k = ϕk. If the reflectivity series is random, such that
the later values of of R(t) cannot be predicted from earlier values, then the autocorrelation
of the data D(t) is approximately the same as the autocorrelation of the wavelet W (t).

At most, these discussions tell us about the problem of deconvolution, without giving
us a practical solution to implement. We must look further.

11.8.2 Designing wavelet shaping filters – Wiener filtering

If the reflectivity series R is random, then the autocorrelation of the recorded data D is a
good approximation to the autocorrelation of the wavelet W , because at most the auto-
correlation of a random sequence is a constant value, as matricies RTR is the identity
matrix I).
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We don’t want the entire autocorrelation, only the autocorrelation waveform, that is,
the sinc-function like part that is in the middle of the autocorrelation output. We will
call this waveform Φ(t).

Suppose that we want to create a filter that will take data with given input wavelet
W (t), and yield a desired output wavelet V (t). Then we want to design a filter F (t) such
that the application of the filter to W (t) yields V (t),

W (t) ⋆ F (t) = V (t). (11.8.9)

Writing this convolution in the discrete representation, we have

n−1∑
k=0

wm−kfk = vm. (11.8.10)

Likely we cannot solve this problem exactly, so there will be an error vector E obtained
by subtracting the right hand side from the left hand side

Em =

(
n−1∑
k=0

wm−kfk − vm

)
. (11.8.11)

11.8.3 Least-squares (Wiener) filter design

An approach developed independently by N. Wiener and A. N. Kolmogorov in the early
1940s is to apply least-squares optimization to the problem of designing the wavelet
shaping filter. The filters that result from this approach are often called Wiener filters.
Because noise is always present we cannot solve the system exactly.

The square of the error is given by

E2 =
m∑
j=0

(
n−1∑
k=0

wj−kfk − vj

)(
n−1∑
k=0

wj−kfk − vj

)
. (11.8.12)

The extra summation is required because the error is a vector, but the square of the error
is taken as the dot product of the error vector with itself, which is a scalar. We much
prefer dealing with a scalar quantity than a vector quantity in this context.

Minimization means taking the derivative and setting the result to zero.
Which derivative? The thing that is varying is the filter, so we should be differenti-
ating with respect to the filter values

∂

∂fp
E2 =

∂

∂fp

m∑
j=0

(
n−1∑
k=0

wj−kfk − vj

)(
n−1∑
k=0

wj−kfk − vj

)
. (11.8.13)

Applying the chain rule, and setting E2 = 0

0 =
m∑
j=0

(
2
n−1∑
k=0

wj−k
∂fk
∂fp

(
n−1∑
k=0

wm−kfk − vm)

)
. (11.8.14)

230



231

We note that ∂fk/∂fp = 1 when k = p and is zero when k ̸= p, hence we have (canceling
the factor of 2)

0 =
m∑
j=0

wj−p(
n−1∑
k=0

wm−kfk − vm). (11.8.15)

which may be rewritten as

m∑
j=0

wj−p

n−1∑
k=0

wm−kfk =
m∑
j=0

wj−pvm. (11.8.16)

In matrix notation this is
WTWF = WTV. (11.8.17)

The matrix WTW is the matrix of autocorrelations of the wavelet, as before, and the
right hand side is the crosscorrelation of the wavelet, with the desired output V (t). The
matrix of autocorrelations is in a form called a Toeplitz matrix. There is a recursive
method of solution of Toeplitz systems pioneered by N. Levinson in 1947, and improved
by Durbin in 1960, and others since that time. The recursive method allows for the filter
F to be solved for directly. This makes what might seem like a difficult process rather
simple.

Several programs in the SU package use this method for performing spiking deconvo-
lution, predictive or gapped-deconvolution, and wavelet shaping using these facts.

11.9 Spiking deconvolution

Our approach must be something different. We will will design a filter that will modify
the autocorrelation, but we will be applying the filter to the data. The plan of attack
will be to model the part of the autocorrelation that we do not want, and to
subtract that part from the data. If we actually have a minimum delay wavelet, this
filter will modify the data to eliminate that part of the data that corresponds to that part
of the autocorrelation we do not want. This only works for minimum phase (aka minimum
delay) wavelets. When we construct the autocorrelation matrix, the diagonal consists of
spikes, with considerably smaller, off-diagonal terms. Think of the autocorrelation matrix
as consisting of sinc functions with the diagonal values considerably larger than the off-
diagonal elements.

11.9.1 Designing the filter

Suppose that we want to do spiking deconvolution. If the data were already spiked,
then the autocorrelation would be a delta function at sample number zero, and the
autocorrelation vector would consist of a single nonzero value (ϕ0, 0, 0, ...). This means
that the autocorrelation matrix would be a diagonal matrix, with ϕ0 repeated down the
diagonal. The value of ϕ0 might be normalized to 1, or not. Thus, we want to annihilate
every point in the autocorrelation except for the first point.
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Our issue is to solve the problem
ϕ0 ϕ1 ϕ2 ... ϕn−2

ϕ−1 ϕ0 ϕ1 ... ϕn−3

ϕ−2 ϕ−1 ϕ0 ... ϕn−4

... ... ... ... ...
ϕn−2 ... ... ϕ−1 ϕ0




f0
f1
...
...

fn−2

 =


ϕ1

ϕ2

...

...
ϕn−1

 . (11.9.1)

Notice that the vector on the right beings with ϕ1 not ϕ0. This is the autocorrelation
considered as a vector, without the first term. We choose this goal because we want to
annihilate ϕ1 to ϕn−1, leaving only the single (spike) value at ϕ0.

Toeplitz matrix

A band matrix of the variety that we assume with the autocorrelation waveform on the
diagonal, and the side lobes of the autocorrelation waveform constitutingthe off-diagonal
terms constitutes a Toeplitz matrix form. This is a good thing, because there is a method
called Levinson recursion that will allow a Φx = b system, where Φ is a Toeplitz matrix,
to be solved by a rapid back substitution method.

Thus we want to solve the Toeplitz system for the filter F = f0, f1, ..., fn−2. This
allows us to compute the values of the autocorrelation after the first value. We then
want to subract this from our data.

Actually filtering and then subtracting is unnecessary. We can build the subtraction
into the filter by writing 1 − F = (1,−f0,−f1, ...,−fn−1). The only thing that we need
to know is how many points long the filter should be. This is the maximum lag of the
spiking filter. We take the length of the autocorrelation waveform as the value
of the maximum lag for spiking deconvolution. This is just the side-lobe to side-
lobe time difference of the sinc-like autocorrelation waveform. The minimum lag we use
is the default value of 1 sample. This maxlag value defines the width of the band, in the
band matrix that we are solving.

The reader should be aware that this algorithm is somewhat insensitive to choice of
the number of samples in the autocorrelation. We do not need to worry about picking
an exact value, as there are a number of values that will work more or less equally well.

11.9.2 What does “lag” mean?

If a time delay is in seconds, or other time units, we call that difference in time simply
a delay. If we express a time delay in samples, then it is the convention to call that a
lag . In the SU programs that have “lags” those lags are expressed in seconds, which are
much easier to find on a plot than to compute a sample number.

11.9.3 How can this possibly work?

The Wiener filter is constructed by creating an annihilator for the values of the autocor-
relation off of the diagonal. But we are applying this to the data.
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Consider our assumptions. We consider the autocorrelation of the data to be more
or less the same as the autocorrelation of the wavelet

W TW ≈ DTD.

If we apply the Wiener filter, which is the column vector (1 − F ) vector consisting of a
single nonzero value in the first component, with the remaining components being zero

W TW (1− F ) ≈ DTD(1− F ).

What If we apply this filter twice? We do this by applying the filter as a row vector
(1− F )T

(1− F )TW TW (1− F ) ≈ (1− F )TDTD(1− F ).

The result is a scalar equal to the single nonzero value in the spiked autocorrelation.
We can propose that this result, which is a scalar, is the result of a dot product of two
vectors ∆T∆ defined as

(1− F )TDTD(1− F ) ≡ ∆T∆.

∆ is a vector that is within a scale factor of the spiked data. Hence, a filter that is
designed to operate on the autocorrelation of the data, also operates on the data.

11.9.4 Spiking Deconvolution in SU

In SU the program supef may be used to perform spiking deconvolution

$ supef

SUPEF - Wiener predictive error filtering

supef <stdin >stdout [optional parameters]

Required parameters:

dt is mandatory if not set in header

Optional parameters:

cdp= CDPs for which minlag, maxlag, pnoise, mincorr,

maxcorr are set (see Notes)

minlag=dt first lag of prediction filter (sec)

maxlag=last lag default is (tmax-tmin)/20

pnoise=0.001 relative additive noise level

...

Note also, that the value of the pnoise= parameter can make a big difference in the
output.

If our data consist of a wavelet W convolved with the reflectivity series R, further
convolved with multiples M , then our model in the previous section is not quite right.
The autocorrelation will contain repetitions due to the multiples.
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Figure 11.5: a) Autocorrelation waveforms of the fake.su data b) Autocorrelation wave-
forms of the same data after predictive (spiking) decon.
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If the wavelet is minimum phase (aka minimum delay), then most of the energy will
be located at the beginning of the waveform, and the autocorrelation of the data will
produce a sinc-like autocorrelation waveform that is localized to the values near the center
of the output of the autocorrelation. This is the diagonal region of the autocorrelation
represented as a matrix.

If we select this window in the autocorrelation for processing, then spiking decon filter
will be generated approximately correctly.

In supef the value of maxlag = is set to the width of the autocorrelation waveform,
which we must determine by taking the autocorrelation using suacor. (Remember that
a “lag” is just a time delay.)

For example, consider the fake.su data

$ suacor < fake.su ntout=51 | suxwigb perc=90.

Another possibility is to stack the autocorrelations

$ suacor < fake.su ntout=51

| sustack key=dt | suxgraph style=normal f1=-.2

which yields a sinc-like waveform. Note that when we are looking for the width of the
autocorrelation waveform, we only output a relatively small number of samples. In this
case we have selected ntout=51. Note also that ntout is chosen to be an odd number
so that the peak of the autocorrelation waveform falls on a sample.

The choice of key=dt was to ensure that the traces were all stacked with respect
to a header field that does not change in the gather and the choice of f1=-.2 is so that
the peak of the autocorrelation is at zero lag. The choice of ntout=51 means that we
want 51 samples on the resulting traces. This number is chosen to be sufficiently large to
capture the side lobes of the wavelet that appears in the center of each of the resulting
traces.

This waveform is the autocorrelation waveform. For data that are dominated by
spikes, or are spectrally white, the autocorrelation waveform would also be a spike.

We pick the width of the autocorrelation waveform. In the case of our example, this
is between approximately 0.0667 and 0.1340 seconds, making the width of the autocorre-
lation waveform approximately .0673 seconds. We apply supef setting this value as the
value of maxlag

$ supef maxlag=.0673 < fake.su | suxwigb perc=99

The data are made more spike-like by the operation. Try different values of maxlag=
to see what the effect of changing this parameter is.

Also you might want to view autocorrelation waveform of the deconvolved data to
see what happens

$ supef < fake.su maxlag=.0673

| suacor ntout=51 | suxwigb perc=90.

or

$ supef < fake.su maxlag=.0673

| suacor ntout=51 | sustack key=dt | suxgraph style=normal
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The effect
We apply the same operations on CDP 265

$ suacor ntout=51 < gain_jon=1_cdp=265.su

| suxwigb perc=99

The autocorrelation waveform is a sinc-like function. We define the “width” of this
waveform to be the window of time just large enough to include the side lobes on each
side of the main lobe. If we measure the time from the beginning to the end of the
autocorrelation waveform, which is to say about .169 seconds to about .247 seconds see
that the width is about .078 seconds. Your values may differ.

This is the value of maxlag that we will set in supef

$ supef < gain_jon=1_cdp=265.su maxlag=.078 | suxwigb xcur=3

To see how well this has spiked the data, we may view the autocorrelation waveform with
suacor

$ supef < gain_jon=1_cdp=265.su maxlag=.078

| suacor ntout=51 | suxwigb perc=90

which should show that the autocorrelation waveform is now a spike. Again, we may
vary the value of maxlag= to see the effect of changing this parameter.

11.9.5 Multiple suppression by Wiener filtering—Gapped
prediction error filtering.

We now seek to eliminate multiples by prediction error filtering also known as predictive
deconvolution. Predictive decon relies on the minimum phase (aka minimum delay) as-
sumption and the notion that the data contain repetitions owing to the series of multiples
M .

One of the reasons that multiples are damaging to processing and hard to eliminate is
that multiples are not merely added to the data, they are convolved with the reflectivity
series R, which is in turn convolved with the wavelet W

D = W ⋆M ⋆ R

Dn =
N∑

m=0

Mn−m

K∑
k=0

Wl−kRk, (11.9.2)

which we could write as a cascaded matrix multiplications on to the vector R

D = MWR (11.9.3)

where both M and W matricies composed of shifted versions of the M and W series,
respectively. Note also, that there is a noise vector N that is added, as well

D = W ⋆M ⋆ R +N (11.9.4)
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which we have been quietly ignoring.
If we form the autocorrelation of the data D, the result will be the same as the

autocorrelation of the series of reverberations M convolved with the wavelet W . The
reflectivity series R is considered to be random because later values of reflectivity may
not, in general, be predicted from earlier values. (This ignores the possibility of trans-
gressive/regressive sequences in geology, which may, indeed, be repetetive.) We may also
consider the noise N to be composed of the sum of a random and non-random part.

The autocorrelation of the reflectivity series will be assumed to not contribute to the
autocorrelation of the data. We call the matrix of shifted autocorrelations Φ which will
be approximately

Φ = (MWR)TMWR

Φ = RTW TMTMWR (11.9.5)

Φ ≈ W TMTMW

where

Φ =



ϕ0 ϕ1 ϕ2 ... ϕn−1

ϕ−1 ϕ0 ϕ1 ... ϕn−2

ϕ−2 ϕ−1 ϕ0 ... ϕn−3

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
ϕ−(n−1) ... ... ϕ−1 ϕ0


. (11.9.6)

Here each row is a shifted version of the autocorrelation of a full data trace D which is
the symmetric (sinc-like) waveform

ϕ−(n−1), ϕ−(n−2), ϕ−(n−3), ..., ϕ−2, ϕ−1, ϕ0, ϕ1, ϕ2, ..., ϕ(n−3), ϕ(n−2), ϕ(n−1).

The character of the autocorrelation will be as follows. If the wavelet W is minimum
phase (aka minimum delay), the portion in the middle about the value ϕ0 will be a sinc-
like waveform consisting of a main lobe centered at ϕ0, symmetric with just a couple
of side lobes, allowing us to estimate the autocorrelation of the wavelet W—hence our
use of the width of the autocorrelation waveform for maxlag= in supef for spiking
deconvolution.

The autocorrelation will contain repetitions owing to the autocorrelation of the mul-
tiples M with the reflectivity series. That repetition time will be related to the two-way
traveltime in the water column. If we apply spiking decon to our data, the autocorrelation
waveform will be a spike, and what remains will be repeating spikes, ideally.

Our autocorrelation will start repeating at some sample k, so we are going to predict
the repetitions in the autocorrelation (which correspond to reverberations in our data)
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and then subtract them off. We must, therefore, find the Wiener filter F given

ϕ0 ϕ1 ϕ2 ... ϕn−1

ϕ−1 ϕ0 ϕ1 ... ϕn−2

ϕ−2 ϕ−1 ϕ0 ... ϕn−3

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
ϕ−(n−1) ... ... ϕ−1 ϕ0





f0
f1
f3
...
...
...
...

fn−1


=



ϕk

ϕk+1

ϕm+2

ϕm+3

...

...

...
ϕ(k+n−1)


. (11.9.7)

Thus, we are finding a least-squares filter F that will predict the repetitions in the
autocorrelation by using the earlier values of the autocorrelation. This is the “predictive”
in predictive decon. The repetitions start at sample k, so this is the delay (lag) of the
filter. We don’t want the repetitions, so the filter we apply to the data is formed by
subtracting F our filter (delayed by k samples).

In our notation, the prediction error filter is given by

1− F = {1, 0, 0, ..., 0,−f0,−f1, ...,−fmax}.

Here there are k − 1 zeros, which is the “gap” in the gapped decon. The “prediction
error” is the difference between the data and the predicted value from the Weiner filter.

11.9.6 Applying gapped decon in SU – supef

By selecting the appropriate combination ofminlag= andmaxlag= defining the Wiener
filter, we can eliminate repetitions in the data, such as those caused by multiples. This
is known as gapped predictive decon in the paralance of the geophysical community.

We begin by spiking our fake+water+pegleg.su which are our data with water-
bottom and pegleg multiples

$ supef < fake+water+pegleg.su maxlag=.0673 | suxwigb perc=99 xcur=2

We then view the autocorrelation of the data in a broader window choosing ntout=1025
samples in the output. The idea is to look for repetitions in the autocorrelation

$ supef < fake+water+pegleg.su maxlag=.0673 |

suacor ntout=1025 | suxwigb perc=90

What we are looking for are repetitions in the autocorrelation. We know that the two-
way traveltime for the water speed is about .5 s, and we see stripes that are at about .51
s above and below the autocorrelation waveform spike. Also we notice that there is an
offset effect. Thus, we apply a moveout correction to flatten the data

$ sunmo vnmo=1500 smute=20 < fake+water+pegleg.su | supef maxlag=.0673 |

suacor ntout=1025 | suxwigb perc=90
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where we have used smute=20 in sunmo to turn off the stretch mute. Notice that the
result is sensitive to the value of vnmo=. It might be that making vnmo= slightly
bigger gives a slightly flatter collection of spikes

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su | supef maxlag=.0673 |

suacor ntout=1025 | suxwigb perc=90

The repetition time of the signal is the value that is needed to define the “gap” in the
gapped decon. In this case the gap is .51 seconds. This value is our choice for minlag=.
The maxlag= will be the value of maxlag= we used for spiking the data added to the
value of the gap, maxlag = maxlag for spiking + gap.

Finally, we finish by doing inverse NMO

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |

supef maxlag=.0673 |

supef minlag=.51 maxlag=.5773 |

sunmo invert=1 vnmo=1800 smute=20 | suxwigb perc=99 xcur=2

Here we have performed spiking decon and have followed this with a gapped decon.
It may be better to do the gapped decon only, which would be done via

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |

supef minlag=.51 maxlag=.5773 |

sunmo invert=1 vnmo=1800 smute=20 | suxwigb perc=99 xcur=2

where we note that the maxlag=.51 + .0673 is chosen as if we had performed spiking
decon. Again we have used smute=20 to turn off the stretch mute in sunmo. The
value of minlag= must not exceed the value of the actual reverberation time,
but it may be less. The value of maxlag= again is not so sensitive.

Again the value of pnoise= may be adjusted to improve the result.
Finally, we may attempt to suppress the multiples with supef

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |

supef minlag=.51 maxlag=.5773 |

sunmo invert=1 vnmo=1800 smute=20 > pef.fake+water+pegle.su

and we may view effect on the multiples by comparing semblance panels

$ suvelan < fake+water+pegleg.su nv=150 dv=15 fv=1450 |

suximage d2=15 f2=1450 cmap=hsv2 bclip=.5 title="cdp 265" &

$ suvelan < pef.fake+water+pegleg.su nv=150 dv=15 fv=1450 |

suximage d2=15 f2=1450 cmap=hsv2 bclip=.3 title="PEF" &

The multiples with speeds near the water speed have been suppressed, as have some of
the multiples from the strong reflector near 2 sec and 2000 m/s. However, this is not as
clean as the radon transform filtered data.

We may repeat the process to eliminate other repetitions in the data, such as those
from pegleg multiples. As with radon domain filtering, we choose appropriate nmo
velocities to flatten the arrivals we choose to remove. You may want to try repeating the
last several steps using the data fake+water+pegleg.su.
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11.10 What (else) did predictive decon do to our

data?

The fact that we are applying an inverse filter to our data means that in some sense we
are making the output look “more like a bunch of spikes” or “more like a bunch of Dirac
delta functions”. Because we know that a spike contains all frequencies, the term spectral
whitening is applied to describe the effect of such filters in the frequency domain. This
bug/feature may be observed in your data by comparing the amplitude spectra

$ suspecfx < fake+water.su | suximage title="data before spiking decon"

$ suspecfx < pef.fake+water.su | suximage title="data after spiking decon"

On one hand, it may seem that the increased frequency content is a good thing. However,
can we really trust that those frequencies have been correctly added to the data? These
may be simply an artifact of the filter that causes more harm than good. Some spectral
whitening is desirable, but most should probably be suppressed by filtering. For example
we might consider simply applying a filter to the data as part of the processing

$ .... | sufilter f=0,2,60,70 | ...

where the values of the corner frequencies of the filter are chosen to reflect a reasonable
range of frequencies in the data that can be trusted. So finally, the processing sequence
for our fake data with waterbottom multiples is

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |

supef maxlag=.0673 |

supef minlag=.51 maxlag=.5773 |

sunmo invert=1 vnmo=1800 smute=20 |

sufilter f=0,2,60,70 | suxwigb perc=99 xcur=2

or, if we seek to do multiple-suppression only, without spiking decon

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |

supef minlag=.51 maxlag=.5773 |

sunmo invert=1 vnmo=1800 smute=20 |

sufilter f=0,2,60,70 | suxwigb perc=99 xcur=2

For the real data, some variation on this processing flow, in terms of the values of min-
lag= and maxlag= will exist. Indeed, these values are guaranteed to vary some across
the survey.

11.10.1 Deconvolution in the Radon domain

Another possibility is to apply the prediction error filtering in the radon domain. For
example, employing the linear τ − p transform we forward radon transform the data,
apply the prediction error filtering
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sunmo vnmo=1500 smute=20 < gain_jon=1_cdp=265.su |

suradon choose=0 igopt=3 pmin=-1500

pmax=1000 interoff=-262 offref=-3237 |

supef minlag=.15 maxlag=1.0 |

suradon choose=4 igopt=3 pmin=-1500 pmax=1000

interoff=-262 offref=-3237 |

sunmo vnmo=1500 invert=1 smute=20 > radonpef.su

The process will do a good job on simple water-bottom reverberations, but other multiples
will not be as well suppressed, unless these can be made exactly periodic in the radon
domain.

11.11 FX Decon

There is application of prediction error filtering in the frequency domain, called “fx
decon” that was created in the 1984 by L.L. Canales. This technique uses predictive
decon in the space-frequency domain to identify and eliminate random noise.

For example, consider the spectrally whitened version of fake.su

$ suwfft w0=0 w1=1 w2=0 < fake.su | suifft > white.fake.su

Applying sufxdecon to these data

$ sufxdecon < white.fake.su | suxwigb perc=99

Try this operation on different versions of CDP 265.
It may be best to reserve ‘FX decon” for the later stages of processing, after the stack.

11.12 Lab Activity #21: Wavelet shaping

Many papers written in the 1970s dealt with the issue of wavelet estimation. That is,
using statistical methods to determine the shape of the average wavelet throughout the
dataset, or in regions in a dataset. The motivation for this is to use deconvolution to
change the waveforms of the data to a new desired output waveform.

The user can get a crude estimate of the wavelet by selecting the waveform from a
horizontal portion of a reflector in the data. (A more sophisticated method of wavelet
extraction is discussed in a later section.) Knowing the trace number and the time
window of the wavelet, we may use suwind to capture this “average wavelet” via:

suwind key=tracl min=TRACE max=TRACE

tmin=TMIN tmax=TMAX < data_subset.su > wavelet.su

where TRACE, TMIN, and TMAX are replaced with the actual values of the trace
number, and minimum and maximum times that where the wavelet of choice is located.

Also, we can make a desired output waveform by using the program suwaveform
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SUWAVEFORM - generate a seismic wavelet

suwaveform <stdin >stdout [optional parameters]

Required parameters:

one of the optional parameters listed below

Optional parameters:

type=akb wavelet type

akb: AKB wavelet defined by max frequency fpeak

berlage: Berlage wavelet

gauss: Gaussian wavelet defined by frequency fpeak

gaussd: Gaussian first derivative wavelet

ricker1: Ricker wavelet defined by frequency fpeak

ricker2: Ricker wavelet defined by half and period

spike: spike wavelet, shifted by time tspike

unit: unit wavelet, i.e. amplitude = 1 = const.

dt=0.004 time sampling interval in seconds

ns= if set, number of samples in output trace

fpeak=20.0 peak frequency of a Berlage, Ricker, or Gaussian,

...

For example

$ suwaveform > dfile.su type=ricker1 fpeak=15

where dfile.su contains a Ricker wavelet with peak frequency fpeak of 15Hz. The
frequency content of the desired output waveform should approximately match the fre-
quency content of the input wavelet.

Given the wavelet (wavelet.su) and the desired output waveform (dfile.su) we may
use the wavelet shaping code, called sushape

SUSHAPE - Wiener shaping filter

sushape <stdin >stdout [optional parameters]

Required parameters:

w= vector of input wavelet to be shaped or ...

...or ...

wfile= ... file containing input wavelet in SU (SEGY trace) format

d= vector of desired output wavelet or ...

...or ...

dfile= ... file containing desired output wavelet in SU format
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dt=tr.dt if tr.dt is not set in header, then dt is mandatory

Optional parameters:

nshape=trace length of shaping filter

pnoise=0.001 relative additive noise level

showshaper=0 =1 to show shaping filter

...

For example, our waveforms may be shaped via:

$ sushape dfile=dfile.su wfile=wavelet.su < data.su > shaped_data.su

The shaping filter works by effectively by performing the operation of deconvolving the
data to remove wavelet.su and the convolution of the resulting “spiked” data by the
desired output waveform dfile.su. The sushape program makes use of Wiener-Levinson
theory to perform this operation in the time domain.

Finding the wavelet and making target waveforms

A great deal of work has been put into “wavelet estimation” techniques in the explo-
ration seismic community. Ideally we should know the wavelet for each shot, and even
the wavelet as a function of angle from the shot. Here, we assume for simplicity that
waveforms chosen carefully off of the data, using suwind are sufficient for our purposes.

To construct the target waveform dfile.su we may use one of the wavelets generated
from the program suwaveform with either type=ricker1 or type=ricker2 being the
best choices, although the Berlage waveform is not a bad choice, either. When con-
structing a target waveform, make sure that the frequency content of the desired output
waveform is roughly the same as that of the data, so that values not be “manufactured”
by the program.

11.13 Filling in missing shots

We have noted that in the Viking Graben Dataset, there are a number of missing shots.
These may be identified by viewing a ”shooting chart” via:

$ suchart < seismic.su key1=sx key2=gx |

xgraph n=120120 linewidth=0

label1="sx" label2="gx" marksize=2 mark=8 &

By zooming in on the plot, we can see that there are gaps in the data between shots
located between sx= 5187 and 5262 meters, between 5387 and 5487 meters, between
14412 and 14512 meters, and between 22162 and 22262 meters. Because there is a 25
meter spacing between successive shot positions this means that shots at the following
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locations are missing: 5212, 5237, 5412, 5437, 5462, 14437, 14462, 14487, 22187, 22212,
and 22237 meters.

Missing data is big issue in exploration seismology because holes in our data are a
problem for processing algorithms, such as most migration routines, that expect that
data are uniformly sampled and are “complete.”

One method that can be employed is to simply replace missing shots with nearest
neighbor shot gathers, or by the average of nearest neighbor shot gathers. For example
we could capture and average two nearest neigbor shot gathers by windowing the data

...

# capture 5187 and 5262

suwind key=sx min=5187 max=5262 < seismic.su > junk1.su

...

and then by sorting into offsets, much as we did when we made a supershot gather in a
previous section

...

# sort and stack into an average shot gather

susort dt offset < junk1.su > junk2.su

sustack key=offset < junk2.su > average5187_5262.su

...

We then make approximations to the missing shots by setting the trace headers to the
values that are necessary so that these new shot gathers take the place of the missing
shots

...

## make shot 5212

#

# set sx,ep,nhs header fields fields compute gx from sx and offset

sushw key=sx,ep,nhs a=5212,180,0 < average5187_5262.su

| suchw key1=gx key2=sx key3=offset a=0 b=1 c=1 > shot5212.su

## make shot 5237

# set sx,ep,nhs header fields fields compute gx from sx and offset

sushw key=sx,ep,nhs a=5237,181,0 < average5187_5262.su

| suchw key1=gx key2=sx key3=offset a=0 b=1 c=1 > shot5237.su

...

Similar commands would be applied for to create average shot gather approximations of
the other missing shots.

Finally, the original data and the new shot gathers are concatenated together to
produce a modified version of the shot gathers
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...

# concatenate, sort to shot gathers, reset cdp field.

cat shot22237.su shot22212.su shot22187.su shot14487.su

shot14462.su shot14437.su shot5462.su shot5437.su

shot5412.su shot5237.su shot5212.su seismic.su > seismic1.su

susort < seismic1.su sx offset > seismic2.su

The file seismic2.su still has one additional change to be made. That is to set the cdp
field of the headers.

We begin by setting the value of cdp to the midpoint value, multiplied by 10 as to
not lose accuracy by round off error. We have to do this, because the cdp header field
can be only integer valued

suchw key1=cdp key2=sx key3=gx b=10 c=10 d=2 < seismic2.su |

suchw key1=cdp key2=cdp key3=cdp a=-16060 b=1 c=0 |

suchw key1=cdp key2=cdp key3=cdp a=0 b=1 c=0 d=125 > seismic3.su

The second line subtracts off 16060 so that the first cdp header field value is 125, which
is 10 times the midpoint spacing in meters. In the third line, we divide the values of cdp
by 125, which, upon inspecting the headers, causes the first cdp/ to have a value of 1,
and the last value to be 2142, which is what the original data had. New trace count is
121440 traces.

Finally, the data can be sorted into cdp’s

susort cdp offset < seismic3.su > seis_repaired_cdp.su

and all of the operations we have discussed so far can be applied to the new file seis repaired cdp.su.

11.14 Advanced gaining operations

Before gaining our data, we would like to remove the effect of the differing source
strengths, and receiver gains on our data. These effects tend to cause vertical strip-
ing in our data. Indeed, this section should probably appear in the section on gaining,
but as this requires some additional sorting of the data, we discuss the operation here.

We must use some estimate for source strength, but we also know that there are likely
variabilities due to the receiver gains, so a statistical approach is used. Here, we apply
RMS power balancing. The approach we use here is fast and simple, but it is not the
only approach that may be applied.

Alternatively, if we had an estimate of the waveform for each shot, and an estimate of
the receiver response for each receiver, we could apply signature deconvolution to create
a surface-consistent correction for these source and receiver characteristics, as well as the
individual variations in the response.

While the great pains are taken to make sources, such as airguns or vibrators repro-
duceable and to make receivers that all have the same response, failures in reproucibility
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happen either because of unexpected behaviors of the instruments, or because of local
conditions in the source and receiver environments.

For the Viking Graben data, we can exploit the fact that the each hydrophone is at
a fixed distance to make these differences quantifiable.

11.14.1 Differing source strengths

We may study the source strength by looking at the rms power of each shot. We do this
by windowing the data to a single offset. For example we might consider looking at the
first arrival at a fixed offset, such as offset=-262 meters. Rather than look at the full
trace, we might consider looking at the maximum of the RMS value of the first reflected
arrival at -262 meters.

This would be done via:

$ suwind key=offset min=-262 max=-262 < shot_gathers.su

> seis_offset_m262.su

$ suwind tmin=.48 tmax=.56 < seis_offset_m262.su |

suxmax mode=rms label2="amplitude"

label1="energy point number" x1beg=101

title="RMS amplitude comparisons at offset=-262 m" &

We first would want to remove source strength, by beginning with our data as shot
gathers. Here this is the file seismic.su before any other processing. There is a program
called susplit which will split the data out into separate files based on header field value
To make separate files of shots, we first move the data into a convenient location

$ mkdir Temp

$ mv seismic.su Temp

$ cd Temp

$ susplit key=ep close=1 < seismic.su

There are 1001 shots, so there will be 1001 files that begin with the word split. We may
loop over these, performing a gaining operation that balances the data by shot gather
panel. The gaining of choice is to divide by the RMS power of the data, which is the
square root of the sum of the squares of the seismic data values in all of the traces of a
given shot gather. In a shell script we run

rm pbal.shot.su

for i in ‘ls split_* ‘

sugain panel=1 pbal=1 < $i >> pbal.shot.su

done

rm split*
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Figure 11.6: RMS power of the first reflected arrival at offset=-262m
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The double redirect out >> says “append values”, so the file pbal.shot.su contains all
of the power balanced shots. We are free remove the separate shot files after the process
is complete via

rm split_*

This is certainly crude. We might improve this by applying sunormalize with the
windowing option

11.14.2 Correcting for differing receiver gains

Similarly, we can take the resulting power balanced shot gathers and sort these into
receiver gathers via

$ susort gx offset < pbal.shot.su |

susplit key=gx close=1

The result now is a collection of files whose names begin in the word split each containing
a single receiver gather. As before, we run in a shell script the operations

rm pbal.rec.su

for i in ‘ls split_* ‘

do

sugain panel=1 pbal=1 < $i >> pbal.rec.su

done

rm split*

to yield the power balanced receiver gathers.
The final file pbal.rec.su of receiver gathers can be re-sorted into CDP gathers and

gained, and the other processing we have discussed already can begin

$ susort < pbal.rec.su cdp offset | sugain jon=1 > gain_jon=1_cdp.su

where here, we recognize that “gain” also includes power balancing for shot strength
and receiver gain. Again, we are free remove the separate shot files after the process is
complete via

$ rm split_*

Both of these operations are captured in the shell script Pbal located in Data5.
This technique is, at best, approximate, and may indeed not generate much improve-

ment in the data. The best situation is if we had the source wavelet for each shot, and
an actual receiver response for each receiver.

There are many attempts in the industry to perform wavelet estimation and to es-
timate receiver response. Such responses could be used to perform a surface consistent
deconvolution.

The term surface consistent deconvolution is often used as a label for deconvolutional
processes that correct for both source and receiver effects.
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11.15 Wavelet estimation

To effectively deconvolve our data it is desirable to have an estimate of the wavelet.

11.15.1 Statistical wavelet estimation

We have assumed that our data are both minimum phase and that the autocorrelation
of our data is more or less the same as the autocorrelation of the wavelet. Thus, given
the autocorrelation of our data |D(t)|2, we have an estimate of the amplitude spectrum
of the wavelet.

By Parseval’s relation of Fourier transforms, we know that

|D(t)|2 ∝ |d(ω)|2

thus we have an estimate of |d(ω)| ∝ |w(ω)|.
We may consider the representation of the wavelet in the Fourier domain to be

w(ω) = |w(ω)| eiϕ(ω).

We may estimate the phase by considering the natural logarithm of the Fourier rep-
resentation

ln [w(ω)] = ln |w(ω)|+ iϕ(ω).

We may construct an analytic representation of the phase using the Hilbert transform.
This is related to the Kramers-Kronig relations and to the Kolmogorov spectral factor-
ization method of generating minimum phase signals. Here,

w(ω) = |w(ω)| e−iH(ln |w(ω)|).

Here, a phase function ϕ(ω) is constructed by applying the Hilbert transform to the
ln |w(ω)|.

11.15.2 Homomorphic Wavelet Estimation and signature
decon

A more sophisticated method of wavelet extraction that we can try is called homomorphic
wavelet estimation. The principle is simple. If the only thing that does not change in a
collection of seismic traces is the wavelet, then the average of the Fourier representations
of the traces would, by the law of large numbers, tend to the spectrum of the wavelet.

We can see why this is so by the following. If we consider the signal s(t) to be the
convolution of the wavelet w(t) with the reflectivity series r(t), further convolved with
the multiple series m(t), with each having its own noise, we have

s(t) = w(t) ⋆ r(t) ⋆ m(t). (11.15.1)

In the frequency domain, the convolutions become multiplications

S(ω) = W (ω)R(ω)M(ω). (11.15.2)
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To make matters simpler, we would represent the data by the natural logarithm of
the spectrum

ln(S(ω)) = ln
(
Aw(ω)Ar(ω)Am(ω)e

i(ϕw(ω)+ϕr(ω)+ϕm(ω))
)

= [ln |Aw(ω)|+ ln |Ar(ω)|+ ln |Am(ω)|] (11.15.3)

+i [ϕw(ω) + ϕr(ω) + ϕm(ω)] .

Thus the natural log of the amplitude spectra can be averaged and the phases can be
averaged over a collection of traces, the result exponentiated, and the inverse transform
performed.

The amplitude spectra should all be similar to the source spectrum, with a loss of
higher frequencies due to anelastic attenuative loss. If the wavelet is the only thing
that does not change very much trace by trace, then sum over these should tend to the
log-amplitude spectrum and phase of the wavelet.

The result can be exponentiated and inverse Fourier transformed giving an estimate
of the wavelet for each shot.

Phase unwrapping

There is an added complication in that phase that is calculated by taking the arctangent
of the ratio of the imaginary part over the real part of the Fourier transformed data
must be “unwrapped.” The arctangent function only returns the principal branch, which
means that the arctangent function only returns phase angles between −Π and π. There
are several strategies for doing unwrapping the phase. The trend in the phase is also
removed to aid in averaging the phase values.

The resulting wavelet may then be deconvolved from the data using sucddecon.
The shell script Signature Decon located in Data5 sorts the data into shot gathers,

splits the shot gathers into separate files, performs homomorphic wavelet extraction and
deconvolution with the extracted wavelet, and concatenates the result on $outfile.

The wavelet estimation seems to work best on the raw data or on the the muted raw
data that has been gained.

#! /bin/sh

# estmiate source wavelet by shot and receiver response

# and deconvolve input data

set -x

infile=shot_gathers.su

outfile=shot_receiver_sigdecon_$infile

echo "Signature decon with homomorphic wavelet estimation "
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## Assumptions:

## 1) wavelet is constant within a shot gather

## 2) reflectivity and multiple series are random

## 3) wavelet is minimum phase

## correcting for souce wavelet

# remove output files

rm shot_$outfile

rm $outfile

rm all_shot_wavelets.su

rm all_receiver_responses.su

# split the original data into shot gathers

# split shot data

susort sx offset < $infile > shot_gathers.su

susplit < shot_gathers.su key=sx

# loop over shot gather files

for i in ‘ls split_sx* ‘

do

# stack real part of the complex log transform (log|A|)

suclogfft < $i | suamp mode=real | sustack key=dt > real.su

# stack imaginary part of the complex log transform (phase)

suclogfft < $i | suamp mode=imag | sustack key=dt > imag.su

# combine real and imag and inverse clog transform

# and output a minimum phase version of

suop2 real.su imag.su op=zipper | suiclogfft |

suminphase | suwind itmax=199 > wavelet_est.su

cat wavelet_est.su >> all_wavelets.su

# deconvolve with sucddecon

sucddecon sufile=wavelet_est.su < $i >> shot_$outfile

done

rm split_sx*
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...

This shell script can be easily extended to the problem of removing the receiver
response, by re-sorting the resulting output into common receiver gathers, and performing
the same wavelet extraction and deconvolution, much as done in the Pbal script in the
previous section.

The reader may notice that we have applied the program suminphase to the result-
ing average signal. This program applies a method called Kolmogorov (1939) spectral
factorization. This is done in what is called the cepstral domain, which is the inverse
Fourier transform of the resulting log frequency domain representation. See Oppenheim
and Schafer (1975).

11.16 Muting NMO corrected data

The program sumute may be used to surgically remove undesirable noise on the CMP
gathers that occurs for times early than the water-bottom reflection. Because our
prospect has a roughly flat surface the time of the reflection of the water bottom is
at approximately time .48 seconds. In addition to the noise before the water-bottom
reflection, there are some unsuppressed multiples, or other arrivals on the far offsets that
are undesirable.

Near offset traces

We may use predictive deconvolution to clean up those near offset traces, or we may
consider eliminating the near offset traces entirely with suwind before further processing.

Putting these together, after NMO we may insert the commands

... | suwind key=offset min=-3237 max=-450 |

sumute key=offset tmute=.45,.45 xmute=-3237,-450 | ...

prior to the stack to clean up the image. The choice of nearest offset to include is a
matter of personal preference. The value of −450 is not necessarily the best value.

A less stringent way to deal with multiples on the near source traces is to apply
intertrace muting . In this case we apply a mute function on the near offset traces that
starts right before the first multiple and removes the rest of the trace. For example

sumute mode=1 key=offset tmute=.89,.80,6.0 xmute=-262,-400,-450 < gain_cdp=265.su | suxwigb key=offset perc=99

will will preserve the parts of the near offset traces that do not have multiples.

11.17 Ghost reflections

The waves that travel from the source to the water surface and then propagate down in
the model, as well as the reflection that travel from the subsurface, to the water surface
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and to the receiver array interfere with the more direct reflections to produce what are
called ghosts. The issue of ghosting, and deghosting can be complicated.

Because the delay between the primary reflections and the ghost reflection is short,
the phenomenon reveals itself as a notch in the spectrum at the frequency where the peak
from the ghost reflection cancels the trough from the primary. Thus, from the source
and receiver depth, and the speed of sound in water, we can estimate this ghost notch as

fnotch =
1

2

Vwater
hsource or receiver

(11.17.1)

where h is the depth to the source or receiver. For example, for the Viking graben data,
the depth to the receiver array is 10 meters. Taking the speed of sound in water of
1500m/s, fnotch, receiver = 75hz.

11.18 Surface related multiple elimination

A modern approach to multiple elimination is the Surface Related Multiple Elimination
(SRME) method invented in 1991 by Erich Verschuur, then a Ph.d. student at Delft
University of Technology. The method is a data driven annihilation method that makes
assumptions about the structure of multiples based on an autoconvolution model of
multiples. Verschuur began with the observation that multiples could be made by the
convolution of a seismic trace with itself (suitably shifted) and reasoned that it should be
possible to use the data itself to model the multiples, and then use adaptive subtraction
to remove the multiples from the data.

11.18.1 The auto-convolution model of multiples

The SRME method operates on a very simple model of multiples. If we consider the
auto-convolution of data with itself, then such resulting autoconvolved data are the
same as multiples, assuming simple single layer reflection.

For example if we convolve the noise free version of the fake.su data with itself and
add this to the noise free fake data

$ suconv < fake_no_noise.su sufile=fake_no_noise.su panel=1 |

suwind itmin=1 itmax=1500 > autoconv.su

$ susum autoconv.su fake_no_noise.su > fake+autoconv.su

$ suxwigb < fake+autoconv.su title="autoconvolution multiples"

we see that the result is similar to what we would expect for data with one multiple.
In theory, we could use the earliest arrivals on a seismic reflection profile to build a

model of the first multiples through autoconvolution, and then adaptively subtract these
out of the data. The demultipled portion of the data would then be autoconvolved to
generate a model of the second order bounces, which in turn would be subtracted. The
process of modeling followed by adaptive subtraction can then be repeated until the data
are completely cleaned of multiples, as best as the algorithm could handle this.
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Both 2D and 3D versions of SRME have been implemented.
Unfortunately, we do not yet have an SRME code in the SU.

11.19 Homework Assignment #8 - Mute, gain,

spectral methods, multiple suppression

This exercise is similar to problem #7 however you will be applying at least one more
processing technique—a spectral method.

At some point in this processing flow, insert a spectral method. This could be filtering
to remove noise, spectral whitening, or a deconvolutional process to shape the waveform.
It is up to you to decide what part of the processing sequence to apply this. Remember
that spectral methods are used to sharpen the waveform to improve resolution, or are to
suppress noise.

In Homework 7, you broke the data into 4 subsets of about 500 CDPs each and
performed multiple suppression in the radon domain, while simultaneously picking NMO
velocities. You applied the NMO correction, and then did a stack of each of the 500 CDP
segments, producing 4 segments of NMO-STACKed data, which you then concatenated
to make the full stacked section.

In this version, you will concatenate the radon multiple-suppressed data and then
build a radon nmo vel.par for the full data.

For example, if you used the CDPs at 250,750,1250,1750 to get your NMO velocities,
then the contents of the file would look something like:

cdp=250,750,1250,1750

tnmo=0,.,..,..,..,..,..,..

vnmo=1500,..,..,..,..,..,..

tnmo=0,.,..,..,..

vnmo=1500,..,..,..

tnmo=0,.,..,..,..,..

vnmo=1500,..,..,..,..

tnmo=0,.,..,..,..,..,..

vnmo=1500,..,..,..,..,..

but with your values. Heere the tnmo= vnmo= are those that you got for the respec-
tive CDPs. Note that the number of tnmo= and vnmo= values per pair have to be
the same, but each pair may have a different number of values from other pairs.

The idea is to concatenate and then NMO-correct the data. Use this radon nmo vel.par
for performing the NMO correction before stacking.

$ sunmo par=radon_nmo_vel.par < radon_gain_yourgainparameters_cdp.su

| sustack > stack.su

Obviously, you cannot complete this assignment on time if you do not start working on
this immediately. Ideally, everyone will have a Radon multiple-suppressed version of the
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full dataset
radon gain yourgainparameters cdp.su ready for class on the due date so we can
proceed with fancier velocity analysis. Other tips:

• Feel free to use at to run the jobs at night.

• Furthermore, you might consider regaining the data after you have done multiple
suppression.

• Who says that you need to stack all of your data? It may be that the far offsets
and the nearest near offsets could be omitted from your data, and make the dataset
a bit smaller. However, is it worth the loss of data? You decide.

If you are still working on Homework 7, then do Homework 7 and Homework 8
simultaneously, with the only difference between 7 and 8 being the spectral method.

11.19.1 How are we doing on multiple suppression and NMO
Stack?

The subset approach that is pursued in the Homework 7 and 8 suffers from a serious flaw.
While we have a set of stacking velocities for each block, we are not taking advantage of
the ability of our programs to interpolate these values across the section. We may see a
blocky appearance.

While performing this procedure in subsets makes it a bit quicker, this is for instruc-
tional purposes only. From now on, we work with the full dataset. We do not
break the data into blocks.

11.20 Concluding Remarks

Much of exploration seismic research conducted prior to the mid 1980s was focused on the
problem of seismic deconvolution and wavelet estimation. The CWP/SU:Seismic Unix
package was largely developed during a time right after this, when exploration seismic
research was focused on amplitude preserving depth migration, so consequently we have
a lot of migration related tools and a comparatively few deconvolution-related programs,
so deconvolutional methods are not yet well represented in the SU package.

Though we have not really done justice here to the broad topic of deconvolution and
the other spectral methods, we can see that the application of these techniques is more
involved than merely applying the operation. Considerable preconditioning of the data
is required to make the traces look more alike, so that the deconvolutional process may
remove the parts (such as multiples) that we don’t want.

Predictive decon really means that we use the first part of the data to predict the
repetitions in the latter part of the data, and to use those predictions to annihilate those
repetitions (multiples). For this to work the repetitions must closely match the initial
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waveforms. Hence, making the amplitudes as uniform as possible is desireable for such
techniques to be applied.

In the modern world there is an increasing demand for amplitude information for the
extraction of amplitude versus angle (AVA) also known as amplitude versus offset (AVO)
information. Balancing away all of the amplitude variability in the data is not desirable,
so methods that preserve amplitudes and are data driven are preferred.
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Chapter 12

Velocity Analysis on more CDP
gathers and Dip Move-Out

A shell script called Velan.radon is supplied in /data/GPGNX61/data/Data5. This is
a general purpose shell script for velocity analysis. The script Velan.radon was origi-
nally designed to aid in the generation of velocities for Radon transform based mulitiple
suppression, but the NMO velocities picked with this script may also be used for stacking.

These shell script makes use of a number of programs that you have used already,
including suvelan, suwind, suximage, suxgraph, sunmo, suradon, and suxwigb as
well as some programs you have not used, such as unisam2, velconv, and smooth2.

The begining of this script gives you an idea of how to run it, and what parameters
you may adjust. This script is, of course set up for the Mobil Line 12 (Viking Graben)
open dataset:

#! /bin/sh

# Velocity analyses for the cmp gathers

# Authors: Dave Hale, Jack K. Cohen, with modifications by John Stockwell

# NOTE: Comment lines preceeding user input start with ##

#set -x

## Set parameters

datadir=.

velpanel=gain.mute.cdp.su # gained data sorted in cdps

vpicks=radon_nmo_vel_X.par # output file of vnmo= and tnmo= values

normpow=0 # see selfdoc for suvelan

slowness=0 # see selfdoc for suvelan

cdpfirst=1 # minimum cdp value in data

cdplast=2142 # maximum cdp value in data

cdpmin=200 # minimum cdp value used in velocity analysis

cdpmax=1950 # maximum cdp value used in velocity analysis

dcdp=600 # change in cdp for velocity scans
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fold=120 # maximum number of traces per cdp gather

dxcdp=12.5 # distance between successive midpoints

# in full data set

mix=0 # number of adjacent cdp panels on either side

# of a given panel to mix

## Set velocity sampling and band pass filters

nv=200 # number of velocities in scan

dv=15 # velocity sampling interval in scan

fv=1450.0 # first velocity in scan

nout=1500 # ns in data

## Set interpolation type for velocity function plots

interpolation=mono # choices are linear, spline, akima, mono

## set filter values for wiggle trace plots

f=1,5,70,80 # bandwidth of data to pass

amps=0,1,1,0 # don’t change

## suximage information

wclip=0 # This number should be between 0 to .15 for real data

bclip=.3 # this number should be between .2 and .5

cmap=hsv2 # colormap

perc=97 # clip above perc percential in amplitude

xcur=1 # allow xcur trace xcursion in wiggle trace plots

curvecolor=black # color of stacking velocity picks curve

#average velocity

vaverage=2100 # this may be adjusted

# radon transform parameters

dp=8 # increment in p in radon transform

pmin=-2000 # minimum value of p in radon transform

pmax=2000 # maximum value of p in radon transform

pmula=20 # t=tmax intercept of radon filter

pmulb=200 # t=0 intercept of radon filter

offref=-3237 # offset at maximum moveout

interoff=-262 # offset at minimum moveout

## unisam parameters

# sloth parameter: Interpolate as sloth=0 velocities, sloth=1 slownesses,

# sloth=3 sloths
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sloth=1

# smoothing

smooth=1

r=3.5 # values should probably not exceed 5 or 6

# preprocess with predictive decon? decon=0 no , decon=1 yes

# minlag= width of autocorellation waveform, maxlag= repetition time + minlag

decon=1

minlag=.48

maxlag=.56

# NMO parameters (set smute=20 to turn off stretch mute)

#smute=1.5

smute=20

######## You shouldn’t have to change anything below this line ###########

....

....

....

exit 0

The idea of the script is to take the full dataset, window it into specific CDPs,
assuming an increment in CDP, allow the user to pick a semblance panel and view the
resulting NMO corrected version of the data panel. If the velocity picks are to the liking
of the user, then the script proceeds to the next CDP panel. The end product is a
collection of tnmo= and vnmo= values in a file radon nmo vel.par.

If we go in, say 500 cdp increments across the data, we will sample the velocity
at several locations (depending on the values of cdpmin= and and cdpmax=) across
the section. This will give a representative collection of velocities that will be more
repesentative of the actual velocity change across the profile. The Velan.radon script
runs a number of SU programs to make an estimate of the velocity profile in time, and
when you are finished doing velocity analysis, will generate uniformly sampled velocity
profiles of both RMS and interval velocities. These are “quick and dirty” representations
of the velocity field, which tend to be bad, because they have spurious errors due to
errors in interpolation and in conversion from RMS to interval velocities. These can be
used as a guide for the construction of a background velocity model.

What you don’t really want to do is to try to do velocity analysis on most cdps,
the errors in picking will make the velocity function “jittery”. You want to be judicious
in your choice of velocity analysis locations. For example, you may want to pick some
velocity functions, do an NMO stack and update those if you see somehting interesting,
or see that you are erroneously stacking multiples.

259



260

Output from Velan.radon

If you look carefully in Velan.radon you will see that there are a number of output files.
These include the (tnmo,vnmo) time and velocity pairs that is the result of semblance
picking. However along the way there are a number of generated files that are useful for
both diagnostics and for further processing. These are:

...

vpicks=radon_nmo_vel_x.par # output file of vnmo= and tnmo= values

...

# binary files output

vrmst=vrmst.bin # VRMS(t) interpolated rms velocities

vintt=vintt.bin # VINT(t,x) as picked

vinttav=vinttav.bin # average VINT(t) of VINT(t,x)

vrmstav=vrmstav.bin # average VRMS(t) of VRMS(t,x)

vinttuni=vinttuni.bin # interploated Vint(t,x)

vintzx=vintzx.bin # VINT(z,x)interpolated interval velocities

vintzav=vintzav.bin # average VINT(z) of VINT(z,x)

vintxz=vintxz.bin # VINT(x,z)interpolated interval velocities

We may view the resulting velocity files by running the shell script Xvelocity, which
will show RMS, average RMS, interpolated RMS, as well as average interval velocities.
These automatically generated velocity files tend to be lumpy, so they are not really
suitable to be used for migration as is, but may provide important information for con-
structing velocity models later on.

The file radon nmo vel x.par has contents that are similar to

cdp=128,192,256,..,...

tnmo=0.0,0.636979,1.15987,1.31199,1.91094,2.9187

vnmo=1500,1557.09,1734.03,1822.5,2041.34,2488.34

tnmo=0.0,0.579936,0.893672,1.35002,1.8539,2.41482,2.7951

vnmo=1500,1561.75,1659.53,1831.81,2032.03,2446.44,2693.22

tnmo=0.0,0.598951,0.922194,1.35952,1.50213,1.89192,2.90919

vnmo=1500,1557.09,1678.16,1794.56,1855.09,2027.38,2562.84

...

...

and so forth.

Here, some hand editing has been applied. Note that there is a tnmo= vnmo= pair for
each listed cdp=..,..,... Also, picking this many velocities is at best a practice exercise.
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The method of picking velocities at a few evenly spaced velocity functions for the
application of suradon is just the beginning. Picking velocities for Radon domain filtering
is really a warmup for velocity analysis of the full dataset.

12.0.1 Picking velocities for NMO-Stack

Once you have done Radon domain filtering, you do not need to do this again and all
further velocity analysis may be performed on the Radon domain filtered data. Here we
stress quality over quantity. The best place to begin velocity analysis is to find a CDP
where the data consist of as horizontal layers as possible.

Make sure you make backup copies of any rado nmo vel X.par files that you have
made so far. The X in the name is a placeholder for an identifying string for that file
of your choice. You can set cdpmin= and cdpmax= in Velan.radon to that single
CDP and perform velocity analysis. Once the script finishes, you will have a new NMO
vel par file. o

12.0.2 Applying migration

We then can apply any of the post stack migration algorithms that we have discussed
earlier in the text.

Any of these corresponding tnmo=..,..,.. vnmo=..,..,... pair sets may be copied
from radon nmo vel x.par a new file, say stolt.par and used as the “par” file as input
for sustolt. Select only one tnmo=..,..,.. vnmo=..,..,.., change tnmo= a set of times
and velocities from near the center of the profile

$ cat stoltmig.par

tmig=0.0,0.665501,1.01727,1.38804,1.70178,2.02502,2.93771

vmig=1500,1594.34,1724.72,1850.44,1915.62,2157.75,2576.81

The sustolt migration program is run the same way as in previous chapters, except
we are inputing the velocity function via a parfile.

$ sustolt par=stoltmig.par cdpmin=1 cdpmax=2142 dxcdp=12.5

< stack_nmo_radon_gain_jon=1.su

> stolt.stack_nmo_radon_gain_jon=1.su

(Note: If you get an error, perhaps a “segmentation fault” there may be a typo in the
stoltmig.par file.)

The file vintt.bin is an approximate interval velocity as a function of time vint(t),
and thus may be used as the vfile in sugazmig, sumigps, or suttoz. For example

$ sugazmig < stack_nmo_radon_gain_jon=1.su vfile=vintt.bin dx=12.5

> gazmig.stack_nmo_radon_gain_jon=1.su

$ sumigps < stack_nmo_radon_gain_jon=1.su vfile=vintt.bin dx=12.5

> migps.stack_nmo_radon_gain_jon=1.su

$ suttoz vfile=vintt.bin nz=1500 < stolt.stack_nmo_radon_gain_jon=1.su

> depth.stolt.stack_nmo_radon_gain_jon=1.su
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Warning! At best these “automated” velocities are for testing purposes only!
Similarly, there is file vintzav.bin that may be used with the depth migration programs.
Again, there tend to be systematic errors between stacking derived interval velocities and
true interval velocities, so these should be used for “quick looks” only.

12.0.3 Homework #9 Velocity analysis revisited, NMO-Stack,
and Stolt migration (This assignment is paired with
Homework #10 in the next chapter, so be aware of
this.)

• Perform velocity analysis on the multiple-suppressed data using Velan.radon.
These stacking velocities, with corresponding cdp values will be in a file called
radon nmo vel.par. Note that if you have good stacking velocities from previous
assignments, please feel free to include this in your radon nmo vel.par file. Feel
free also to hand edit these velocities as you see fit.

• Apply NMO and Stack, using

$ sunmo par=radon_nmo_vel.par < radon_gain_jon=1.cdp.su |

sustack > stack_nmo_radon_gain_jon=1.su

Again, the file names you use should be the names of your corresponding files.

• Discuss the degree of improvement over the image quality given these better NMO
velocities.

• Now perform a Stolt migration of your multiple-suppressed, NMO-corrected, and
stacked data. Because Stolt migration uses RMS velocities, which is to say NMO
(stacking) velocities, take one of the tnmo= and vnmo= pairs from your radon nmo vel.par
file as your tmig= and vmig= values. Or make up what you view as a represen-
tative or average set of tmig= and vmig= values for sustolt.

• Use suintvel to convert your RMS velocities into interval velocities. Using dz=3
nz=1500 with these velocities, use suttoz to make an approximate depth section
out of your Stolt-migrated image. To do this you may use the shell script RM-
StoINT located in /data/GPGNX61/data/Data5. The resulting suttoz.par file
may be used for this. For example

$ suttoz par=suttoz.par dz=3 nz=1500 < stolt.su > stolt.depth.su

(We performed some of these operations in the early part of the semester. You may
consult the earlier chapters of the notes for details. Note, also that there are shell
script examples in Data5.)
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• Show your Stolt-time section and your Stolt-depth section and list your velocity-
time pairs. Don’t be afraid to use small clip= values to accentuate weaker arrivals
that you see in the section.

• List the contents of your NMO par file.

• Discuss what you see.

Additional tips

For students who wish to redo their multiple-suppression, or, if you are still working
on assignments 7 and 8, please make use of the shell script Velan.radon located in
/data/GPGNX61/data/Data5. This shell script is a version of the Velan script set up
to allow you to make picks explicitly for multiple suppression. You may also want to
apply predictive deconvolution to suppress the near-offset multiples before applying Ve-
lan.radon, and Radon.final.

The dz=3 and nz=1500 in suttoz is the source of the 4500 you see for the maximum
depth on your depth section.. With d1=3 in the headers on the output to suximage
we are showing the data to a depth of 4500 meters.

The question for the processor is how much of the output to show.
You may try different values of dz= and nz= to see what happens to your depth-

stretched image.

12.1 Other velocity files

There are several velocity files that are generated by the Velan script. These velocity
files are provided only as a guide for later velocity model building.

The file vintzx.bin is a very approximate vint(z, x), but likely contains irregularities
that would not make this the best velocity file to use for migration, though it is in the
correct format to be used as the input vfile in sumiggbzo, or for the input velocity file
for rayt2d, which generates the traveltime tables for sukdmig2d. Similarly, while the
file vintxz.bin is in the correct format to be used as the input for sumigfd, sumigffd,
sumigsplit, or sumigpspi, it too will likely be too “lumpy” to give a good result.

We can however use these estimated velocities for some interval velocity information
when we build velocity models by horizon picking.

12.1.1 Velocity analysis with constant velocity (CV) stacks

We have used a method of semblance picking to estimate the stacking velocities. This
is an estimate, but it is not the only way to get the stacking velocities. An alternate
method is the constant velocity stack (CVS).

In /data/GPGNX61/data/Data5 are two shell scripts MakeCVSstackMovie
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#! /bin/sh

data=multiple_suppressed_gained_data.su

movie=stackmovie.su

fvel=1500

dvel=10

vmax=3000

vel=$fvel

rm $movie

while [ "$vel" -lt $vmax ]

do

echo $vel

sunmo tnmo=0.0 vnmo=$vel < $data |

sustack >> $movie

vel=‘expr $vel + $dvel‘

done

suxmovie < $movie perc=98 n1=1500 n2=2142 loop=1 sleep=5

title="$g" fframe=$fvel dframe=$dvel &

exit 0

and ViewStackMovie

#! /bin/sh

movie=stackmovie.su

fvel=1500

dvel=10

264



265

suxmovie < $movie perc=99 d1=.004 n1=1500 n2=2142 sleep=10000

loop=1 title="vnmo=$fvel + $dvel * %g" &

exit 0

The idea of CVS is to perform constant velocity NMO on the data and stack it,
repeating for a large range of velocities. Here, this idea is implemented by sweeping
through stacking velocities starting with vnmo=1500 in increments of 10 m/s. The
data are NMO corrected and then stacked. Each stacked section becomes a frame in a
movie. In the title line of the movie, the stacking velocity is expressed as vnmo=1500
+ devel*frame number.

It takes about 20 minutes on a modern multi-core PC to generate the stackmovie.su.

12.2 Dip Moveout (DMO)

Dip moveout is a partial migration that will convert NMO corrected prestack data to more
closely approximate true zero offset data. In the original formulation of dip moveout by
Dave Hale, the operation is applied to common offset data that have been NMO corrected.
The program sudmofk can be used to perform dip moveout on our NMO corrected data.

Hale’s method was not designed to be amplitude preserving. More modern applica-
tions of this type of data transformation that preserve amplitude have been developed.
Two of these general transformations are called transformation to zero offset TZO or
migration to zero offset MZO. As the names suggest data are tranformed through a
migration-like operation to synthetic zero-offset data. The motivation for developing
such operations follow from the computation cost of doing full prestack migrations. Al-
ternately, these techniques can be applied as velocity analysis techniques. Indeed, NMO
or NMO followed by DMO are really first approaches to transformation to zero offset.

12.2.1 Implementing DMO

Note, you need storage space for one or more copies of the full dataset if you want to try
this. For example, we may NMO correct the data via

$ sunmo par=nmo\_vel.par < radon_gain_jon=1.cdp.su > nmo_radon_gain_jon=1.cdp.su

$ susort offset gx < nmo_radon_gain_jon=1.cdp.su > nmo_radon_gain_jon=1.co.su

where it is important to note that it is not a good idea to try to use pipes with susort.
The .co. in the extension name indicates that these data are now in common offset
gathers. We may then perform dip moveout processing with sudmofk. This program
requires an average set of tdmo=..,..,.. vdmo=..,..,.. pairs, which may are an
average set of times and velocities taken from nmo vel.par, and which are copied into
a file named, say, dmofk.par

265



266

$ sudmofk par=dmofk.par cdpmin=1 cdpmax=2142 dxcdp=12.5 noffmix=7

< nmo_radon_gain_jon=1.co.su

> dmofk_nmo_radon_gain_jon=1.co.su

Here noffmix=7 is chosen for this example. You may need to experiment with this
parameter on your data. The entries in dmofk.parmust be named tdmo= and vdmo=
for sudmofk to be able to see them. The DMO process may take some time to complete
time to complete.

After the process has finished, you will need to resort your data back into CMP
gathers via:

susort cdp offset < dmofk_nmo_radon_gain_jon=1.co.su

> dmofk_nmo_radon_gain_jon=1.cdp.su

These new data may then be stacked and migrated. Again, you must have sufficient
storage capacity to save a couple of copies of the full dataset.

We expect improvement of the stack with DMO only in areas where dips are suffi-
ciently large that the NMO approximation fails to completely flatten the data. If the
input data are reflections over a generally flat, or low dip geology, then we don’t expect
to gain much by performing this operation.

12.3 Concluding Remarks

The notion of NMO followed by DMO as a way of building equivalent zero-offset datasets
naturally let to the notion of “transformation to zero offset (TZO)” and “migration to
zero offset (MZO)”. The basic notion of TZO and MZO is the following.

Suppose that you could do a perfect amplitude-preserving prestack depth migration
of data with offset. Then the result would be a representation of the earth—a geologic
model with bandlimited delta functions describing the reflectors. Then suppose we did
a remodeling from that representation to yield zero-offset data. The cascade of these
processes would be a “migration followed by remodeling” to the desired zero-offset traces.
In fact, you could remodel to any type of data.

But if you could do this, why bother? With all of those integrals it would be horribly
expensive in computer time? The answer is that a number of the integrals in the cascade
of migration-remodeling can be done approximately, using asymptotic methods, so that
the resulting algorithm looks like a migration algorithm, but migrates the data not to
the earth model, but to approximate zero-offset data. These data could then be stacked
and then migrated with a conventional migration program.

One motivation for doing this is to create a more advanced type of velocity analysis.
The usual NMO—DMO—STACK procedure is only approximate for real data. The TZO
methods work better, though they are more expensive. In fact, there are a number of
forms of “migration velocity analysis” that make use of the ideas stated here. The other
motivation was to apply DMO as a substitute for full 3D depth migration, back when
computer speed and storage was more limited.
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Chapter 13

Velocity models and horizon picking

One seldom uses velocity models derived directly from velocity analysis, though this is
possible. What is more common is to use a preliminary depth-section seismic image
combined with an estimate of interval velocities to construct a background wavespeed
profile that is used for either poststack or prestack depth migration.

For example, we may perform Stolt migration and convert this to a depth section
with suttoz to obtain first approximation of the migrated image

$ sustolt par=stolt.par cdpmin=1 cdpmax=2142 dxcdp=12.5

< stack.nmo.radon.gain.jon=1.su

> stolt.seis.su

$ suttoz par=suttoz.par nz=1500 < stolt.seis.su > stolt.depth.seis.su

(Note. Do not call this a “depth migration”. It is a depth section derived from a time
migration.)

The file suttoz.parmay be made by running shell scriptRMStoINT, which employs
suintvel to do the interval velocity conversion. This script is provided in /scratch/GPGNX61/data/Data5.
The shell script produces as its output the file suttoz.par. The contents of this simple
shell script are

#! /bin/sh

# convert a single RMS velocity to Interval velocity.

# put your values of tnmo= and vnmo= here.

tnmo=

vnmo=

#output file

outfile=suttoz.par

suintvel t0=$tnmo vs=$vnmo outpar=$outfile

echo t=$tnmo >> $outfile
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echo "use v= and t= values for suttoz "

echo " result output in $outfile"

exit 0

The entries for vnmo= and tnmo= are the same values that you used for vmig= and
tmig= in stolt.par.

13.1 Horizon picking and smooth model building

From the contour map of vintzx.bin that we view with Xvelocity, one of the other
velocity plots that is output by Velan, or from independent well log information we may
be able to get an idea of a reasonable velocity trend that will be appropriate for migration.
If you know the stratigraphy of an area, reasonable velocities estimates for given rock
types provide this type of information. Again, simple is better than complicated, and
fewer depth horizons (no more than 4) are better than more.

We then may use the script Horizon to pick depth horizons on the depth-migrated
image. The shell script uses a similar blind picking technique as is used in Velan and
prompts the user for velocities, as well as the space rate of change of velocity (these
should be numbers on the order of dvdz=.1 and dvdx=.001 or dvdx=-.001 where
the units are (velocity units per meter ).

The Horizon script is interactive and produces several output files. Two of these are
unif2.ascii and unif2.par. These files is used by the shell script Unif2.sh to build a
smoothed velocity file. The files produced by Horizon may be hand edited and Unif2
run again to produce an updated set of velocity files.

The contents of Unif2.sh are

#! /bin/sh

#set -x

# set parameters here

method=mono # interpolation method

nz=1500

nx=2136

pickedvalues=junk1.picks # this is the output of Horizon

cp junk1.picks temp.ascii

smoothint2 < temp.ascii r1=100 ninf=$ninf > unif2.ascii
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unif2 < unif2.ascii par=unif2.par |

smooth2 n1=$nz n2=$nx r1=50 r2=50 > junk.bin

cp junk.bin unewvelzx.bin

transp n1=$nz < unewvelzx.bin > unewvelxz.bin

exit 0

The value of nx= is the number of CDPs in the stacked data. The user may set the
values of r1= and r2= to higher or lower values to control the level of smoothing.

The output velocity files are unewvelzx.bin and unewvelxz.bin, which may then
be used for migration. time

13.2 Migration velocity tests

Likely you will not get the correct migration velocities on the first iteration of the velocity
modeling process. The shell script Gbmig

#! /bin/sh

# Gaussian Beam

#set -x

# use a v(z,x) velocity profile here

vfile=unewvelzx.bin

# vary the values of dz and nz as a test before running the full model

sumiggbzo < stack.dmo.nmo.myradon.gain.jon=1.su dx=12.5 dz=3 nz=1500 \

verbose=1 vfile=$vfile > gb.seismic.su

applies Gaussian-beammigration to the stacked data using the velocity file unewvelzx.bin.
This migration result may be viewed with suximage via

suximage < gb.seismic.su perc=99 legend=1 d1=3 d2=12.5 &

and the errors in migration velocity may be seen as either “frowns,” indicating under-
migration or “smiles” indicating over-migration of the data. The user may hand edit the
file unif2.par, increasing or decreasing the velocities in response to the respective smiles
or frowns. The user then runs Unif2 again, and re-runs the migration. This process is
repeated until the image has neither smiles nor frowns.
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13.2.1 Homework #10 - Horizon picking, velocity model
building, v(z,x) migration.

Use the methods outlined in this chapter to build a velocity model and perform Gaussian
beam migration using that model.

• Use the RMStoINT and Suttoz shell scripts to stretch the Stolt migrated version
of your data from Homework #9 into a depth section.

• Use this depth section as input to the Horizon script and build a velocity model by
picking several horizons in the data. Assign interval velocities based on the average
interval velocities that are shown when you run Xvelocity

• Run the Unif2.sh script to generate the smoothed velocity files unewvelxz.bin
and unewvelzx.bin.

• Use the unewvelzx.bin file and your stacked data in the script Gbmig to perform
Gaussian beam migration on these data.

You can view your velocity profile via:

ximage n1=1500 < unewvelzx.bin d1=3 d2=12.5 label1="depth (m)"

label2="position (m)" legend=1

13.3 Concluding remarks

Seismic data and any other auxilliary data are combined in a step that involves the intelli-
gence of the processor to build better background velocity profiles for further migrations,
and for modeling.

We should not expect that this process can be made totally automatic. Indeed, some
experimentation will show that it is quite easy for iterations of picking and migrating to
yield a diverging series of modifications, that would ultimately result in a terrible and
unrealistic velocity profile.

In the modern world new techniques such as full waveform inversion provide an ap-
proach that yields estimates of velocities. The preferred method of migration is reverse
time migration (RTM), which is a prestack depth migration method that employs a
finite difference algorithm using the full wave equation, but in reverse time.
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Chapter 14

Prestack Migration

Owing to advances in computer technology it is now possible to perform prestack migra-
tion. The motivation for doing this is that information regarding the angular dependence
of the reflectivity is preserved in prestack methods, but is not preserved in poststack mi-
gration. Having such information can give clues about the material properties at depth
that are helpful in determining porosity and permeability as an aid in reservior charac-
terization.

Furthermore, prestack migration may be used as a step in migration velocity analysis.
If the output is in the form of image gathers which is to say migrated CMP gathers, then
analysis of the curvature of the arrivals in the image gathers can be used as a guide for
updating the wavespeed profile.

Finally, prestack migration is preferable if there is large vertical relief in subsurface
structures. Data which are largely flat do not benefit from prestack migration.

The cost of prestack migrating a single CMP gather is comparable to migrating the
entire poststack profile, so the computer costs increase correspondingly.

14.1 Prestack Stolt migration

The program sustolt may be used to perform prestack time migration by first sorting
the multiple-suppressed, gained and NMO corrected data into common-offset gathers and
then applying

$ sustolt par=stolt.par cdpmin=1 cdpmax=2142 dxcdp=12.5

< nmo.radon.gain.jon=1.co.su > prestack.stolt.nmo.radon.gain.jon=1.su

This takes about an hour to complete on a relatively fast PC. The result can be sorted
into image gathers, which is to say “migrated CMP gathers.” The motivation to do
such a thing may be velocity analysis, but unfortunately, using sustolt we can only have
a vrms(t) profile.

Choose a representative velocities from your NMO velocity analysis, taking care to
represent these as tmig=..,..,..,.. vmig=..,..,..,...
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14.2 Prestack Kirchoff time migration

It is possible to perform Kirchhoff time migration using an algorithm based on the so-
called double square root operator expressed as the program suktmig2d

SUKTMIG2D - prestack time migration of a common-offset

section with the double-square root (DSR) operator

suktmig2d < infile vfile= [parameters] > outfile

Required Parameters:

vfile= rms velocity file (units/s) v(t,x) as a function

of time

dx= distance (units) between consecutive traces

Optional parameters:

fcdpdata=tr.cdp first cdp in data

firstcdp=fcdpdata first cdp number in velocity file

lastcdp=from header last cdp number in velocity file

dcdp=from header number of cdps between consecutive traces

angmax=40 maximum aperture angle for migration (degrees)

hoffset=.5*tr.offset half offset (m)

nfc=16 number of Fourier-coefficients to approximate

low-pass

filters. The larger nfc the narrower the filter

--More--

The shell script Suktmig2d is provided to aid in the implementation of this code.

#! /bin/sh

#

vfile=vel_nmo.bin # rms velocity as a function of cdp and time

dx=25 # spacing between receivers

indata=radon_mute_filtered_repaired_co.su

outdata=ktmig.su

rm ktmig.su

# split the data into a bunch of common offset gaters

susplit < $indata key=offset
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# loop over shot gather files

for i in ‘ls split_* ‘

do

suktmig2d vfile=$vfile dx=$dx < $i >> $outdata

done

## clean up

# remove shot split files

rm split*

The input data, not NMO corrected, are sorted into shot gathers, with missing gathers
replaced by the method discussed in Chapter 11. The input velocity file consists of a
smooth model in RMS velocities, as would be produced by sunmo with the voutfile=
option set.

The shell uses susplit to break the data into seprate shot files, which are then mi-
grated individually. The resulting migrated shots are contcatenated to the file ktmig.su.
This file may be sorted into CDP gathers. These migrated CDP gathers are called image
gathers.

This takes about 7 hour to run, so this is practical for project assignments.

14.3 Prestack Depth Migration

It is common for prestack depth migration algoritms to be written with the assumption
that the data are not gained. Prestack depth migration is a wave-equation based process,
so the wave equation automatically takes care of the effect of geometrical spreading. The
data also need to be in the form of shot gathers.

To undo geometrical spreading and resort the data into shot gathers

$ susort sx offset < myradon.gain.jon=1.cdp.su > junk1.su

sugain tpow=-1 < junk1.su > myradon.shot.su

Or better yet, perform radon multiple suppression on the ungained, but muted data.

14.3.1 Pre-stack Kirchhoff Depth migration

The program sukdmig2d may be used to perform prestack depth migration. The pro-
gram rayt2d is used to construct a traveltime table for the Kirchhoff migration algorithm.
The shell script Rayt2d.large is provided for this purpose.
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#! /bin/sh

rayt2d vfile=unewvelzx.bin \

dt=.004 \

nt=1500 \

fz=0 nz=1500 dz=3 \

fx=0 nx=2142 dx=25 ek=0 \

fa=-80 na=80 \

nxs=1012 fxs=3237 dxs=25 ms=1 \

tfile=tfile.unewvelzx

exit 0

The script Sukdmig2d is provided to run the migration.

#! /bin/sh

rayt2d vfile=unewvelzx.bin \

dt=.004 \

nt=1500 \

fz=0 nz=1500 dz=3 \

fx=0 nx=2142 dx=25 ek=0 \

fa=-80 na=80 \

nxs=1012 fxs=3237 dxs=25 ms=1 \

tfile=tfile.unewvelzx

exit 0

The program requires a lot of ram. It will not run on all systems.

14.3.2 Pre-stack Fourier Finite difference depth migration

Given a good background velocity profile unewvelxz.bin the script Prestackffd.

#! /bin/sh

nxo=2142

nxshot=1012

nz=1500

dz=3

dx=12.5

vfile=unewvelxz.bin
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fmax=90

data=radon_mute_filtered_repaired_shot.su

susort sx offset < $data > data.shot.su

sumigpreffd < data.shot.su nxo=$nxo nxshot=$nxshot nz=$nz dz=$dz dx=$dx fmax=$fmax vfile=$vfile verbose=1 > pre_ffd.su

exit 0

This script can be modified and adapted to run sumigprefd, sumigprepspi, and sum-
igpresp.

Each take several days to a week to run on the Viking Graben data, making these
inappropriate for classroom or final project usage.
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