A Course in Geophysical Image Processing with
Seismic Unix:
GPGN 461/561 Lab
Fall 2015

Instructor: John Stockwell
Research Associate
Center for Wave Phenomena
copyright: John W. Stockwell, Jr. (©)2009-2015 all rights reserved

License: You may download this document for educational
purposes and personal use, only, but not for
republication.

January 12, 2016

Contents

1 Seismic Processing Lab- Preliminary issues

1.1 Motivation for thelab o0
1.2 Unix and Unix-like operating systems

1.2.1 Steep learning curve
1.3 Loggingin e
1.4 Whatisa Shell?.
1.5 The working environment L L.
1.6 Setting the working environment
1.7 Choice of editor
1.8 The Unix directory structure
1.9 Scratch and Data directories L.
1.10 Shell environment variables and path

1.10.1 The path or PATH

1.10.2 The CWPROOT variable
1.11 Shell configuration files
1.12 Setting up the working environment

1.12.1 The CSH-family,

1.12.2 The SH-family
1.13 Unix help mechanism- Unix man pages

Lab Activity #1 - Getting started with Unix and SU

2.1 Pipe |, redirect in < , redirect out >, and run in background &

2.2 Stringing commands together oo
2.2.1 Questions for discussion L.
2.2.2 The FFT versus the DFT

2.3 Unix Quick Reference Cards

Lab Activity #2 - viewing data
3.0.1 Data image examples
3.1 Viewing an SU data file: Wiggle traces and Image plots
3.1.1 Wiggle traceso
3.1.2 Imageplots
3.2 Greyscale
3.3 Legend ; making grayscale values scientifically meaningful

12
12
13
13
14
14
15
16
16
18
20
21
22
22
22
22
23
24
24

26

29
30
30
33

3.4 Display balancing and display gaining
3.5 Homework problem #1 - Due dates Thursday 3 Sept 2015 and Tuesday 8
September 2015
3.6 Concluding Remarks oo
3.6.1 What do the numbers mean?

Help features in Seismic Unix

4.1 Theselfdoc

4.2 Finding the names of programs with: suname

4.3 Lab Activity #3 - Exploring the trace header structure
4.3.1 What are the trace header fields-sukeyword?
4.3.2 Types of data formats

4.4 Concluding Remarks oo

Lab Activity #4 - Depth conversion of “Data images”
5.1 Imaging as the solution to an inverse problem
5.2 Inverse scattering imaging as time-to-depth conversion
5.2.1 Migration as a mapping of data from time to space
5.2.2 Migration as focusing followed by depth conversion
5.3 Time-to-depth with suttoz ; depth-to-time with suztot
5.4 Time to depth conversion of a test pattern
5.4.1 How time-depth and depth-time conversion works
5.4.2 How to calculate the depths Z1, 22, and 23
5.5 Sonar and Radar, bad header values and incomplete information
5.6 Thesonardata
5.7 Homework Problem - #2 - Time-to-depth conversion of the sonar.su and
the radar.su data. Due Thursday 10 September 2015 and Tuesday 15
September 2015, for the respective sections
5.8 Concluding Remarkso
5.8.1 The sonar - seismic analogy

Zero-offset (aka poststack) migration

6.1 Migration as reverse time propagation.
6.2 Lab Activity #5 - Hagedoorn’s graphical migration
6.3 Migration as a Diffraction stack
6.4 Migration as a mathematical mapping
6.5 Concluding Remarks oo

Lab Activity #6 - Several types of migration

7.1 Different types of “velocity”
7.1.1 Velocity conversion vpp,s(t) to vine(t) o oo

7.2 Stolt or (f, k)-migration
7.2.1 Stolt migration of the Simple model data

7.3 Gazdag or Phase-shift migration

9

7.4 Claerbout’s finite-difference migration 97
7.5 Ristow and Ruhl’s Fourier finite-difference migration 97
7.6 Stoffa’s split-step migration L. 98
7.7 Gazdag’s Phase-shift Plus Interpolation migration 99
7.8 Lab Activity #7 - Shell scripts L. 100
7.9 Homework #3 - Due 17 Sept 2015 (Thursday session) and 22 Sept 2015
(Tuesday Session). 102
791 Hints 102
7.10 Lab Activity #8 - Kirchhoff Migration of Zero-offset data 103
7.11 Spatial aliasing 106
7.11.1 Interpreting theresult 106
7.11.2 Recognizing spatial aliasing of data in the space-time domain . . . 108
7.11.3 Recognizing spatial aliasing in the (fk) domain 108
7.11.4 Remedies for spatial aliasing 110
7.12 Concluding Remarks oo 115
Zero-offset v(t) and v(x, z) migration of real data, Lab Activity #9 116
8.1 Stolt and Phaseshift v(¢) migrations 117
8.1.1 Questions for discussion 119
8.1.2 Phase Shift migration. L. 120
8.1.3 Questions for discussion 120
8.2 Lab Activity #10: FD, FFD, PSPI, Split step, Gaussian Beam v(z, 2)
migrations oL 120
8.3 Homework Assignment #4 Due 24 Sept 2015 Thursday session, 28 Sept
2015 Tuesday group - Migration comparisons 122
8.4 Concluding Remarks oo 122
Data before stack 123
9.1 Lab Activity #11 - Reading and Viewing Seismic Data 123
9.1.1 Reading thedata 124
9.2 Getting to know our data - trace header values 124
9.2.1 Setting geometryo 125
9.3 Getting to know our data - Viewing thedata 126
9.3.1 Windowing Seismic Data 0L 126
9.4 Getting to know your data - Bad or missing shots, traces, or receivers . . 128
9.4.1 Viewing a specific Shot gather 128
9.4.2 Charting source and receiver positions 129
9.5 Geometrical spreading aka divergence correction 130
9.5.1 Some theory of seismic amplitudes 130
9.5.2 Lab Activity #12 Gaining the data 131
9.5.3 Statistical gaining 132
9.5.4 Model based divergence correction 134
9.6 Getting to know our data - Different Sorting Geometries 134
9.6.1 Lab Activity #13 Common-offset gathers 134

9.6.2 Lab Activity #14 CMP (CDP) Gathers 135
9.6.3 Sortandgain 135
9.6.4 Viewing the headers 137
9.6.5 Stacking Chart 0L 140
9.6.6 Capturing a Single CMP gather 140
9.7 Quality control through raw, CV, and brute stacks 143

9.7.1 Lab Activity #15 - “Raw” Stacks, CV Stacks, and Brute Stacks . 143
9.8 Homework: #5 Due Thursday 1 Oct 2015 and Tues 6 Oct 2015 prior to

9:00AM . ..o 144
9.8.1 Are we done with gaining? 145
9.9 Concluding Remarks oo 145
10 Velocity Analysis - Preview of Semblance and noise suppression 147
10.0.1 Creative use of NMO and Inverse NMO 150
10.1 The Radon or (7 - p) Transform 150
10.1.1 How filtering in the Radon domain differs from f — k filtering . . 153
10.1.2 Semblance and Radon for a CDP gather 153
10.2 Multiple suppression - Lab Activity #17 Radon transform 158

10.2.1 Homework assignment #6, Due Thursday 8 Oct 2015 (before 9:00am)
and on Tues 13 Oct 2015 161
10.2.2 We are not finished with multiple suppression and velocity analysis. 163
10.3 Muting revisitedo 163
10.3.1 The stretch mute Lo 163
10.3.2 Muting specific arrivals. 165
10.3.3 Lab Activity #16 — muting the data 166
10.3.4 Identifying waves to be muted 166
10.3.5 How to pick mute values. 166
10.3.6 The shape of the wavelet 167
10.3.7 Further processing Lo o 168
10.3.8 The at command: using the computer while you are asleep 169

10.4 Homework Assignment #7 due Thursday 15 Oct 2015 and Tuesday 27

October 2015, before 9:00 AM. 171
10.5 Concluding remarks 173
11 Spectral methods and advanced gaining methods for seismic data 174
11.1 Common assumptions of spectral method processing 174
11.1.1 Causality 176
11.1.2 Minimum phase (aka minimum delay) 176
11.1.3 White spectrum 176
11.1.4 Linear systemso 177
11.2 The three mathematical languages of signal processing 178
11.2.1 The Forward and Inverse Fourier Transform 178
11.3 Convolution, cross-correlation, and autocorrelation 179
11.3.1 Convolution 179

11.3.2 Lab Activity #18: Frequency filtering
11.3.3 Lab Activity #19: Spectral whitening of the fake data
11.4 The Discrete Representation of Seismic Data
11.4.1 The Forward and Inverse Z-transform
11.4.2 The inverse Z-transform
11.5 Deconvolution
11.5.1 Convolution of a wavelet with a reflectivity series
11.5.2 Convolution with a wavelet
11.5.3 Deconvolution
11.5.4 Deconvolution of functions represented by their Z-transforms . . .
11.5.5 Division in the frequency domain - Deterministic deconvolution
11.5.6 Signature deconvolution using homomorphic wavelet estimation
11.6 Cross- and auto-correlation L.
11.6.1 Z-transform view of cross-correlation
11.6.2 Cross correlation and auto correlation in SU suxcor and suacor
11.7 Lab activity #20: Wiener (least-squares) filtering
11.7.1 A matrix view of the convolution model
11.7.2 Designing wavelet shaping filters — Wiener filtering
11.7.3 Least-squares (Wiener) filter design
11.8 Spiking deconvolution o
11.8.1 What does “lag” mean?
11.8.2 Spiking Deconvolution in SU
11.8.3 Multiple suppression by Wiener filtering—Gapped prediction error
filtering.
11.8.4 Applying gapped decon in SU —supef
11.9 What (else) did predictive decon do to our data?
11.9.1 Deconvolution in the Radon domain.
11.1I0FX Decon o
11.11Lab Activity #20: Wavelet shaping
11.12Filling in missing shots
11.13Advanced gaining operations
11.13.1 Differing source strengths
11.13.2 Correcting for differing receiver gains
11.14Advanced deconvolution— Homomorphic Wavelet Estimation and signa-
ture decon
11.15Muting NMO corrected data
11.16Ghost reflections
11.17Surface related multiple elimination
11.17.1 The auto-convolution model of multiples
11.18Homework Assignment #8, Due Thursday 5 Nov, before 9:00am and Tues-
day 3 Nov 2015 L
11.18.1 How are we doing on multiple suppression and NMO Stack?
11.19Concluding Remarks

12 Velocity Analysis on more CDP gathers and Dip Move-Out

12.0.1 Applying migration
12.0.2 Homework #9 - Velocity analysis for stack, Due Thurs 12 Nov 2015,
before 9:00am and Tuesday 10 November 2015. (This assignment

is paired with Homework #10 in the next chapter, so be aware of

this.) o

12.1 Other velocity files
12.1.1 Velocity analysis with constant velocity (CV) stacks

12.2 Dip Moveout (DMO)
12.2.1 Implementing DMO

12.3 Concluding Remarkso

13 Velocity models and horizon picking
13.1 Horizon picking and smooth model building
13.2 Migration velocity tests oo
13.2.1 Homework #10 - Build a velocity model and perform Gaussian
Beam Migration, Due 12 Nov 2015 for both sections.
13.3 Concluding remarks

14 Prestack Migration
14.1 Prestack Stolt migration oL
14.2 Prestack Kirchoff time migration
14.3 Prestack Depth Migration
14.3.1 Pre-stack Kirchhoff Depth migration
14.3.2 Pre-stack Fourier Finite difference depth migration

List of Figures

1.1

2.1
2.2

2.3
24

3.1
3.2

3.3
3.4

3.5
3.6
3.7

5.1

5.2

A quick reference for the vi editor. 17
The suplane test pattern. 27
a) The suplane test pattern. b) the Fourier transform (time to frequency)

of the suplane test pattern via suspecfx. 29
UNIX Quick Reference card pl. From the University References 31
UNIX Quick Reference card p2., 32
Image of sonar.su data (no perc). Only the largest amplitudes are visible. 37

Image of sonar.su data with perc=99. Clipping the top 1 percentile of
amplitudes brings up the lower amplitude amplitudes of the plot. 38
Image of sonar.su data with perc=99 and legend=1. 40
Comparison of the default, hsv0, hsv2, and hsv7 colormaps. Rendering
these plots in grayscales emphasizes the location of the bright spot in the

colorbar. L 41
Image of sonar.su data with perc=99 and legend=1. 42
Image of sonar.su data with median balancing and perc=99 44

Comparison of seismic.su median-normalized, with the same data with
no median balancing. Amplitudes are clipped to 3.0 in each case. Notice
that there are features visible on the plot without median balancing that
cannot be seen on the median normalized data. 45

Cartoon showing the simple shifting of time to depth. The spatial coor-
dinates & do not change in the transformation, only the time scale ¢ is
stretched to the depth scale z. Note that vertical relief looks greater in a
depth section as compared with a time section. 68
a) Test pattern. b) Test pattern corrected from time to depth. c) Test
pattern corrected back from depth to time section. Note that the curvature
seen depth section indicates a non piecewise-constant v(t). Note that the
reconstructed time section has waveforms that are distorted by repeated
sinc interpolation. The sinc interpolation applied in the depth-to-time
calculation has not had an anti-alias filter applied. 70

2.3

6.1

6.2
6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

a) Cartoon showing an idealized well log. b) Plot of a real well log. A
real well log is not well represented by piecewise constant layers. c¢) The
third plot is a linearly interpolated velocity profile following the example
in the text. This approximation is a better first-order approximation of a
real well log.o

Geometry of Karcher’s prospect, note semicircular arcs indicating that
Karcher understood the relation of surfaces of constant traveltime to what
Is seen ON a SEISMOGTAIN. v v v it
a) Synthetic Zero offset data. b) Simple earth model.
The Hagedoorn method applied to the arrivals on a single seismic trace. .
Hagedoorn’s method applied to the simple data of Fig 6.2. Here circles,
each centered at time ¢t = 0 on a specific trace, pass through the maximum
amplitudes on each arrival on each trace. The circle represents the locus
of possible reflection points in (z,z) where the signal in time could have
originated.
The dashed line is the interpreted reflector taken to be the envelope of the
circles. L
The light cone representation of the constant-velocity solution of the 2D
wave equation. Every wavefront for both positive and negative time ¢ is
found by passing a plane parallel to the (z, z)-plane through the cone at
the desired time ¢t. We may want to run time backwards for migration.

The light cone representation for negative times is now embedded in the
(x,z,t)-cube. A seismic arrival to be migrated at the coordinates (&, 7) is
placed at the apex of the cone. The circle that we draw on the seismogram
for that point is the set of points obtained by the intersection of the cone
with the t =0-plane.
Hagedoorn’s method of graphical migration applied to the diffraction from
a point scatterer. Only a few of the Hagedoorn circles are drawn, here, but
the reader should be aware that any Hagedoorn circle through a diffraction
event will intersect the apex of the diffraction hyperbola.
The light cone for a point scatterer at (x,z). By classical geometry, a
vertical slice through the cone in (z,t) (the z = 0 plane where we record
our data) is a hyperbola. Time migrations collapse diffraction hyperbolae
to their respective apex points. Depth migrations map these apex points
into the (x,2) (2D) plane.o
Cartoon showing the relationship between types of migration. a) shows
a point in (&, 7)j, b) the impulse response of the migration operation in
(x,z), c) shows a diffraction, d) the diffraction stack as the output point

(T,2)0

85

7.1

7.2

7.3

7.4

7.5
7.6

9.1
9.2
9.3

9.4

9.5

9.6
9.7

a) Spike data, b) the Stolt migration of these spikes. The curves in b) are
impulse responses of the migration operator, which is what the curves in
the Hagadoorn method were approximating. Not only do the curves repre-
sent every point in the medium where the impulses could have come from,
the amplitudes represent the strength of the signal from that respective
location.
a) The simple.su data b) The same data trace-interpolated, the interp.su
data. You can recognize spatial aliasing in a), by noticing that the peak of
the waveform on a given trace does not line up with the main lobe of the
neighboring traces. The data in b) are the same data as in a), but with
twice as many traces covering the same spatial range. Each peak aligns
with part of the main lobe of the waveform on the neighboring trace, so
there is no spatial aliasing.
a) Simple data in the (f,k) domain, b) Interpolated simple data in the
(f, k) domain, c¢) Simple data represented in the (k,,k,) domain, d) In-
terpolated simple data in the (k,,k,) domain. The simple.su data are
truncated in the frequency domain, with the aliased portions folded over
to lower wavenumbers. The interpolated data are not folded.
a) simple.su data unfiltered, b) simple.su data filtered with a 5,10,20,25
Hz trapezoidal filter, ¢) Stolt migration of unfiltered data, d) Stolt migra-
tion of filtered data, e) interpolated data, f) Stolt migration of interpolated
data. Clearly, the most satisfying result is obtained by migrating the in-
terpolated data.
The results of a suit of Stolt migrations with different dip filters applied.
The (k1, k2) domain plots of the simple.su data with the respective dip
filters applied in the Stolt migrations of Figure 7.5

The first 1000 traces in the data.
a) Shot 200 as wiggle traces b) as an image plot.
Gaining tests a) no gain applied, b) tpow=1 c) tpow=2, d) jon=1.
Note that in the text we often use jon=1 because it is convenient, not
because it is optimal. It is up to you to find better values of the gaining
parameters. Once you have found those, you should continue using those.
Common Offset Sections a) offset=-262 meters. b) offset=-1012 meters.
c) offset=-3237 meters. Gaining is done via ... —sugain jon=1 —
A stacking chart is merely a plot of the header CDP field versus the offset
field. Note white stripes indicating missing shots.
CMP 265 of the gained data.
a) “Raw” stack: no NMO correction, b) CV Stack vhmo=1500, c¢) CV

Stack vnmo=2300 d) Brute Stack vnmo=1500,1800,2300 tnmo=0.0,1.0,3.0 142

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

10

Semblance plot of CDP 265. The white dashed line indicates a possible
location for the NMO velocity curve. Water-bottom multiples are seen on
the left side of the plot. Multiples of strong reflectors shadow the brightest

arrivals on the NMO velocity curve. 148
CMP 265 NMO corrected with vinmo=1500. Arrivals that we want to keep
curve up, wheres multiple energy is horizontal, or curves down. 149

a) Suplane data b) its Radon transform. Note that a linear Radon trans-
form has isolated the three dipping lines as three points in the (7-p) do-
main. Note that the fact that these lines terminate sharply causes 4 tails

on each point in the Radon domain. 151
The suplane test pattern data with the steepest dipping arrival surgically
removed in the Radon domain. 152

a) Synthetic data similar to CDP=265. b) Synthetic data plus simulated
water-bottom multiples. ¢) Synthetic data plus water-bottom multiples,

plus select pegleg multiples., 154
a) Synthetic data similar to CDP=265. b) Synthetic data plus simulated
water-bottom multiples. ¢) Synthetic data plus water-bottom multiples,

plus select pegleg multiples. 155
a) Synthetic data in the Radon domain b) Synthetic data plus simulated
water-bottom multiples in the Radon domain. c¢) Synthetic data plus
water-bottom multiples, plus select pegleg multiples in the Radon domain. 156
CMP 265 NMO corrected with vinmo=1500, displayed in the Radon trans-

form (7-p) domain. Compare this figure with Figure 10.2. The repetition
indicates multiples. L 159
CDP 265 NMO corrected with the velocity function vinmo=1500,1800,2300
tnmo=0.0,1.0,2.0 but with no stretch mute parameter applied. NMO
stretch artefacts appear in the long offset, shallow portion of the section. 164

10.10An average over all of the shots showing direct arrivals, head waves, wide

11.1
11.2

11.3

11.4

11.5

11.6

angle reflections, and a curve along with muting may be applied to elimi-

nate these waves.o 167
Example of a far-field airgun source signature 175
a) Amplitude spectra of the traces in CMP=265, b) Amplitude spectra
after filtering.o 180
a) Original fake data b) fake data with spectral whitening applied. Note
that spectral whitening makes the random background noise bigger. . . . 182
Deterministic decon of CDP 265 using the farfield airgun signature esti-
mate from Fig 11.1 oo 191
a) Autocorrelation waveforms of the fake.su data b) Autocorrelation wave-
forms of the same data after predictive (spiking) decon. 199
RMS power of the first reflected arrival at offset=-262m 212

10

Preface

I started writing these notes in 2005 to aid in the teaching of a seismic processing lab
that is part of the courses Seismic Processing GPGN452 (later redesignated GPGN461)
and Advanced Seismic Methods (GPGN561) in the Department of Geophysics, Colorado
School of Mines, Golden, CO.

In October of 2005, Geophysics Department chairman Terry Young asked me if I
would be willing to help teach the Seismic Processing Lab. This was the year following
Ken Larner’s retirement. Terry was teaching the lecture, but decided that the students
should have a practical problem to work on. The choice was between data collected
in the Geophysics Field Camp the previous summer, or the an industry dataset that
was acquired near the Viking Graben in the North Sea. The latter dataset was brought
by Terry from Carnegie Mellon University. We chose the latter, and decided that the
students should produce as their final project a poster presentation similar to those seen
at the SEG annual meeting. Terry seemed to think that we could just hand the students
the SU User’s Manual and the data, and let them have at it. I felt that more needed
to be done to instruct students in the subject of seismic processing while simultaneously
introducing them to the topics of navigating the Unix operating system, performing some
simple shell language programming, and of course, using Seismic Unx.

In the years that have elapsed my understanding of the subject of seismic processing
has continued to grow. In each successive semester I have gathered more examples and
figured out how to apply more types of processing techniques to the data.

My vision of the material is that we are replicating the seismic processors’ base ex-
perience, such as a professional might have obtained in the petroleum industry in the
late 1970s. The idea is not to train students in a particular routine of processing, but
to teach them how to think like geophysicists. Because seismic processing techniques
are not exclusively used on petroleum industry data, the title of “Geophysical Image
Processing” was chosen.

11

Chapter 1

Seismic Processing Lab- Preliminary
issues

1.1 Motivation for the lab

In the lecture portion of the course GPGN452/561 (now GPGN461/561) (Advanced Seis-
mic Methods/Seismic Processing) the student is given a word, picture, and chalkboard
introduction of the process of seismic data acquisition and the application of a myriad of
processing steps for converting raw seismic data into a scientifically useful picture of the
earth’s subsurface.

This lab is designed to provide students with practical hands-on experience in the
reality of applying seismic processing techniques to synthetic and real data. The course,
however, is not a “training course in seismic processing,” as one might get in an industrial
setting. Rather than training a student to use a particular collection of software tools,
we believe that it is better that the student cultivate a broader understanding of the
subject of seismic processing. We seek also to help students develop some practical skills
that will serve them in a general way, even if they do not go into the field of oil and gas
exploration and development.

Consequently, we make use of freely available open-source software (the Seismic Unix
package) running on small-scale hardware (Linux-based PCs). Students are also encour-
aged to install the SU software on their own personal (Linux or Mac) PCs, so that they
may work (and play) with the data and with the codes, at their leisure.

Given the limited scale of our available hardware and time, our goal is modest, to
introduce students to seismic data processing through a 2D single-component processing
application.

The intended range of experience is approximately that which a seismic processor of
mid to late 1970s might have experienced on a vastly slower, more expensive, and more
difficult to use processing platform.

Our technology is different from that of the 1970s geophysicist. This section is in-
cluded to help familiarize the student with that technology.

12

13

1.2 Unix and Unix-like operating systems

The Unix operating system (as well as any other Unix-like operating system, which
includes the various forms of Linux, UBUNTU, Free BSD Unix, and Mac OS X) is
commonly used in the exploration seismic community. Consequently, learning aspects
of this operating system is time well spent. Many users may have grown up with a
“point and click” environment (or a “there is an app for that” environment), where a
given program is run via a graphical user interface (GUI) featuring menus and assorted
windows. Certainly there are such software applications in the world of commercial
seismic processing, but none of these are inexpensive, and none give the user access to
the source code of the application.

There is also an “expert user” level of work where such GUI-driven tools do not exist
and programs are run from the commandline of a terminal window or are executed as
part of a processing sequence in a shell script.

In this course we use the open source CWP /SU:Seismic Unix (called simply Seismic
Unix or SU) seismic processing and research environment. This software collection was
developed largely at the Colorado School of Mines (CSM) at the Center for Wave Phe-
nomena (CWP), with contributions from users all around the world. The SU software
package is designed to run under any Unix or Unix-like operating system, and is avail-
able as full source code. Students are free to install Linux and SU on their PCs (or use
Unix-like alternatives) and thus have the software as well as the data provided for the
course for home use, during, and beyond the time of the course.

The datasets are also open. The major dataset that we will use in the course was put
in the public domain by Mobil corporation in the early 1990s. The student may keep
both the data and the software for his/her own continuing education after the course is
finished.

1.2.1 Steep learning curve

The disadvantage that most beginning Unix users face is a steep learning curve owing
to the myriad of commands that comprise Unix and other Unix-like operating systems.
The advantages of software portability and flexibility of applications, as well as superior
networking capability, however, makes Unix more attractive to industry than Microsoft-
based systems for these expert level applications. While a user in an industrial envi-
ronment may have a Microsoft-based PC on his or her desk, the more computationally
intensive processing work is done on a Unix-based system. The largest of these are clus-
ters composed of multi-core, multiprocessor PC systems. It is not uncommon these days
for such systems to have several thousand “cores,” which is to say subprocessors. Thus,
massive parallelism is available in the industry environment.

Because a course in seismic processing is of broad interest and may draw students
with varied backgrounds and varied familiarity with computing systems, we begin with
the basics. The reader familiar with these topics may skip to the next chapter.

13

14

1.3 Logging in

As with most computer systems, there is a prompt, usually containing the word ”login”
or the word "username” that indicates the place where the user types his or her login
name. The user is then prompted for a password. Once on the system, the user either has
a windowed user interface as the default, or initiates such an interface with a command,
such as startx in some installations of Linux.

(If you are unable to login on the laboratory machines, you likely need to set your
CSM MultiPass password. For this you will need your Colorado School of Mines E-Key,
which you obtained when you registered at the school.)

1.4 What is a Shell?

Some of the difficult and confusing aspects of Unix and Unix-like operating systems are
encountered at the very beginning of using the system. The first of these is the notion of
a shell. Unix is an hierarchical operating system that runs a program called the kernel
that is is the heart of the operating system. Everything else consists of programs that are
run by the kernel and which give the user access to the kernel and thus to the hardware
of the machine.

The program that allows the user to interface with the computer is called the “working
shell.” The basic level of shell on all Unix systems is called sh, the Bourne shell. Under
Linux-based systems, this shell is actually an open-source rewritten version called bash
(the Bourne again shell), but it has an alias that makes it appear to be the same as the
sh that is found on all other Unix and Unix-like systems.

The common working shell environment that a user is usually set up to login in under
may be csh (the C-shell), tcsh (the T-shell, which is a non proprietary version of csh,
ksh (the Korn shell, which is proprietary), zsh which is an open source version of Korn
shell, or bash, which is an open source version of the Bourne shell.

On Linux and Mac OS X systems bash is the default shell environment.

The user has access to an application called terminal in the graphical user environ-
ment, that when launched (usually by double clicking on an icon that looks like a small
video monitor) invokes a window called a terminal window. (The word “terminal” harks
back to an earlier day, when a physical device called a "terminal,” consisting of a screen
and keyboard (but no mouse), constituted the users’ interface to the computer.) It is at
the prompt on the terminal window that the user has access to a commandline where
Unix commands are typed.

Most “commands” on Unix-like systems are not built in commands in the shell, but
are actually programs that are run under the users’ working shell environment. The shell
commandline prompt is asking the user to input the name of an executable program.
That program may be a system command, such as a directory (folder) listing, or it may
be a program written by a third party, or by the user him/herself.

14

15

1.5 The working environment

In the Unix world all filenames, program names, shells, and directory names, as well as
passwords are case sensitive in their input, so please be careful in running the examples
that follow.

If the user types:

$ cd <--- change directory with no argument
- takes the user to his/her home
(don’t type the dollar sign) directory

In these notes, the $ symbol will represent the commandline prompt. The user does not
type this $. Because there are a large variety of possible prompt characters, or strings of
characters that people use for the prompt, we show here only the dollar sign $ as a generic
commmandline prompt. On your system it might be a %, a >, or some combination of
these with the computer name and or the working directory and/or the commandline
number.

$ echo $SHELL <--- returns the value of the users’
- working shell environment
type this dollar sign

The command echo $SHELL tells your working shell to return the value that denotes
your working shell environment. In English this command might be translated as “print
the value of the variable SHELL”. In this context the dollar sign $ in front of SHELL
should be translated as “value of”. Thus, "echo value of SHELL”.

Common possible shells are

/bin/sh <--- the Bourne Shell
/bin/bash <--- the Bourne again Shell
/bin/ksh <--— K-shell

/bin/zsh <--— Z-shell

/bin/csh <--- C-shell

/bin/tcsh <--- T-shell.

The environments sh, bash, ksh, and zsh are similar. We will call these the “sh-family.”
The environments csh and tcsh are similar to each other, but have many differences from
the sh-family. We refer to csh and tcsh as the csh-family.

Again, on Linux and Mac OX systems /bin/bash is usually the default working shell
environment.

15

16

1.6 Setting the working environment

Each of these programs have a specific syntax, which can be quite complicated. Each is
a language that allows the user to write programs called “shell scripts.” Thus Unix-like
systems have scripting languages as their basic interface environment. This endows Unix-
like operating systems with vastly more flexibility and power than other operating systems
you may have encountered as point and click environments. Even those environments
may have a shell command structure that the user is protected from by a windowed
environment.

Wny have such a structure? The answer is that “point and click is not enough.” The
expert user needs to be able provide more complicated instructions to the computer, and
the shell provides the languge of those instructions.

With more flexibility and power, there comes more complexity. It is possible to
perform many configuration changes and personalizations to your working environment,
which can enhance your user experience. For these notes we concentrate only on enough
of these to allow you to work effectively on the examples in the text.

1.7 Choice of editor

To edit files on a Unix-like system the user must adopt an editor. The traditional Unix
editor is vi or one of its non-proprietary clones vim (vi-improved), gvim, or elvis. The
vi environment has a steep learning curve making it often unpopular among beginners.
If a person is envisioning working on Unix-like systems a lot, then taking the time to
learn vi is also time well spent. The vi editor is the only editor that is guaranteed to
be on all Unix-like systems. All other editors are third-party items that may have to be
added on some systems, sometimes with difficulty.

Similarly there is an editor called emacs that is popular among many users, largely
because it is possible to write programs in the LISP language and implement these within
the emacs environment. There is also a steep learning curve for this language. There
is often substantial configuration required to get emacs working in the way the user
desires.

A third editor is called pico, which comes with a mailer called “pine.” Pico is easy
to learn to use, fully menued, and runs in a terminal window.

The fourth class of editor consists of the “screen editors.” Popular screen editors
include xedit, nedit, and gedit. There is a windowed interfaced version of emacs called
xemacs that is similar to the first two editors. These are all easy to learn and to use.

Not all editors are the best to use. The user may find that invisible characters are
introduced by some editors, and that there may be issues regarding how wrapped lines
are handled that may cause problems for some applications. These issues are another
incentive for an expert user, such as a Unix system administrator to prefer vi over other
more intuitive editors.

The choice of editor is often a highly personal one depending on what the user is
familiar with, or is trying to accomplish. Any of the above mentioned editors, or similar

16

Vi Quick Reference
http://www.sfu.cal~yzhang/linux

MOVEMENT (lines - ends at <CR>; sentence- ends at puncuation-space; section- ends at <EOF>)
By Character Marking Position on Screen
mp mark current position asp (a..2)
k t p move to mark position p
'p move to first non-whitespace on line w/mark p
h 4—%—» | <o [P KIL o> _
\ : Miscellaneous Movement
J fm forward to character m
Fm backward to character m
By Line tm forward to character before m
nG tolinen Tm backward to character after m
0,% first, last position on line w move to next word (stops at puncuation)
Nor_ first non-whitespace char on line w move to next word (skips punctuation)
+ - first character on next, prev line b move to previous word (stops at punctuation)
B move to previous word (skips punctuation)
By Screen e end of word (puncuation not part of word)
AF, 7B scroll foward, back one full screen E end of word (punctuation part of word)
AD,~U scroll forward, back half ascreen), (next, previous sentence
AE,~Y show one more line at bottom, top ILI[next, previous section
L go to the bottom of the screen L{ next, previous paregraph
z0 position line with cursor at top % goto matching parenthesis () {} []
Z. position line with cursor a middle
z- position line with cursor at
EDITING TEXT

Entering Text

Searching and Replacing

a append after cursor

Aor$a append at end of line

i insert before cursor

lor_i insert at beginning of line

o open line below cursor

(@) open line above cursor

cm change text (mis movement)

Cut, Copy, Paste (Working w/Buffers)

dm delete (m is movement)

dd deleteline

Dord$ deletetoendof line

X delete char under cursor

X delete char before cursor

ym yank to buffer (mis movement)
yyor Y yank to buffer current line

p paste from buffer after cursor
P paste from buffer before cursor
“bdd cut line into named buffer b (a..z)
“bp paste from named buffer b

w
W
Iwl+n
n

N

:s/old/new
:slold/new/g
:X,yslold/new/g
:%s/old/new/g

search forward for w

search backward for w

search forward for w and move down n lines
repeat search (forward)

repesat search (backward)

replace next occurence of old with new
replace all occurences on the line
replace all ocurrences fromlinextoy
replace all occurrencesin file

:%s/old/new/gc same as above, with confirmation

Miscellaneous

n>m
n<m
U

u

J

orf
"G

indent n lines (m is movement)
un-indent Ieft n lines (mis movement)
repeat last command

undo changes on current line

undo last command

join end of line with next line (at <cr>)
insert text from external file f

show status

Figure 1.1: A quick reference for the vi editor.

17

17

18

third party editors likely are sufficient for the purposes of this course.
For this class, if you are not already familiar with vi or some other editor, I would
recommend using gedit.

1.8 The Unix directory structure

As with other computing systems, data and programs are contained in “files” and “files”
are contained in “folders.” In Unix and all Unix-like environments “folders” are called
“directories.”

The structure of directories in Unix is that of an upside down tree, with its root at the
top, and its branches—subdirectories and the files they contain—extending downward.
The root directory is called “/” (pronounced “slash”).

While there exist graphical browsers on most Unix-like operating systems, it is more
efficient for users working on the commandline of a terminal windows to use a few sim-
ple commands to view and navigate the contents of the directory structure. Some of
these commands are pwd (print working directory), s (list contents), and cd (change
directory).

Locating yourself on the system

If you type:

$ cd
$ pwd
$ 1s

You will see your current working directory location, which is your called your “home
directory.” You should see something like

$ pwd
/home/yourusername

where “yourusername” is your username on the system. Other users likely have their
home directories in

/home

or something similar depending on how your system administrator has set things up. The
command 1s (which is short for "list”) will show you the contents of your home directory,
which may consist of files or other subdirectories.

The codes for Seismic Unix are installed in some system directory path. We will
assume that all of the CWP/SU: Seismic Unix codes are located in

/usr/local/cup

18

19

)

This denotes a directory “cwp,” which is the sub directory of a directory called “local,”
which is in turn is a subdirectory of the directory “usr,” that itself is a sub directory of
slash.

It is worthwile for the user to spend some time learning the layout of his or her
directories. There is a command called

$ df

which shows the hardware devices that constitute the available storage on the users’
machine. A typical output from typing “df”

$ df -h

Filesystem Size Used Avail Use), Mounted on
/dev/sdal 286G 19G 253G 7% /

none 4.0K 0 4.0K 0% /sys/fs/cgroup
udev 3.9G 4.0K 3.9G 1% /dev

tmpfs 795M 1.1M 794M 1% /run

none 5.0M 0 5.0M 0% /run/lock

none 3.9G 488K 3.9G 1% /run/shm

none 100M 44K 100M 1% /run/user
fermat:/u 2.0T 1.3T 664G 66% /u
fermat:/gpfc 3.0T 1.1T 1.8T 38} /gpfc
isengard:/class 156G 562M 14G 4% /class
isengard:/usr/local/cwp 20G 17G 2.2G 89} /usr/local/cwp
isengard:/scratch 378G 270G 90G 76% /scratch
isengard:/data 99G 52G 42G 56} /data

isengard:/data/cwpscratch 30G 6.9G 22G 25} /data/cwpscratch

Note items in the far left column. Those whose names that begin with “dev” are hardware
devices on the specific computer. The items that begin with a machine name, in this
case “isengard.mines.edu” exist physically on another machine (named “isengard”), but
are remotely mounted as to appear to be on this machine. The second column from
the left shows the total space on the device, the third column shows the amount of space
used, while the fourth shows the amount available, the fifth column shows the usage as
a percentage of space used. Finally the far right column shows the directory where these
devices are mounted.

In Unix-like environments, devices are mounted in such a way that they appear to
be files or directories. Under Unix-like operating systems, the user sees only a directory
tree, and not individual hardware devices.

If you try editing files in some of these other directories you will find that you likely
may not have permission to read, write, or modify the contents of many those directo-
ries. Unix is a multi-user environment, meaning that from an early day, the notion of

19

20

protecting users from each other and from themselves, as well as protecting the operating
system from the users, has been a priority.

In none of these examples have we used a browser, yet there are browsers available
on most Unix systems. There is no fundamental problem with using a browser, with
the exception that you have to take your hands off the keyboard to use the mouse. The
browser will not tell you where you are located within a terminal window. If you must
use a browser, use “column view” rather than “icon view” as we will have many levels of
nested directories to navigate.

1.9 Scratch and Data directories

Directories with names such as “scratch” and “data” are often provided with user write
permission so that users may keep temporary files and data files out of their home direc-
tories. Like “scratch paper” a scratch directory is usually for temporary file storage, and
is NOT BACKED UP! Indeed, on any computer system there may be other unbacked up
directories. You need to be aware of which parts of your computer system are backed up
and which are not. Because there are no backups on scratch directories, it is important
for the user to purchase a USB device to back up his or her items from the scratch areas.

Some directories may be physically located on the specific machine were you are
seated and may not be visible on other machines. Because the redundancy of backups
require extra storage, most system administrators restrict the amount of backed up space
to a relatively small area of a computer system. To restrict user access, quotas may be
imposed that will prevent users from using so much space that a single user could fill up a
disk. However, in scratch areas there usually are no such restrictions, so it is preferable to
work in these directories, and save only really important materials in your home directory.

Users should be aware, that administration of scratch directories may not be user
friendly. Using up all of the space on a partition may have dire consequences, in that the
administrator may simply remove items that are too big, or have a policy of removing
items that have not been accessed over a certain period of time. A system administra-
tor may also set up an automated “grim file reaper” to automatically delete materials
that have not been accessed after a period of time. Because files are not always
automatically backed up, and because hardware failures are possible on any
system, it is a good idea for the user to purchase USB storage media and get
in the habit of making personal backups on a regular basis. A less hostile mode
of management is to institute quotas to prevent single users from hogging the available
scratch space.

You may see a scratch directory on any of the machines in your lab, but these are
different directories, each located on a different hard drive. This can lead to confusion
as a user may copy stuff into a scratch area on one day, and then work on a different
computer on a different day, thinking that their stuff has been removed.

The availability and use of scratch directories is important, because each user has a
quota that limits the amount of space that he or she may use in his/her home directory.

20

21

On systems where a scratch directory is provided, that also has write permission, the
user may create his/her personal work area via

$ cd /scratch
$ mkdir yourusername <--- here "yourusername" is the
your user name on the system

Unless otherwise stated, this text will assume that you are conducting further operations
in your personal scratch work area.

For our system, the scratch directory that we will work in is gpfc so your instructions
are to

$ cd /gpfc
$ mkdir yourusername <--- here "yourusername" is the
your user name on the system

The directory gpfcyourusername will be your preferred scratch or working area.

1.10 Shell environment variables and path

The working shell is a program that has a configuration that gives the user access to
executable files on the system. Recall that echoing the value of the SHELL variable

$ echo $SHELL <--- returns the value of the users’
working shell environment

tells you what shell program is your working shell environment. There are other envi-
ronmental variables other than SHELL. Again, note that if this command returns one of
the values

/bin/sh
/bin/ksh
/bin/bash
/bin/zsh

then you are working in the SH-family and need to follow instructions for working with
that type of environment. If, on the other hand, the echo $SHELL command returns
one of the values

/bin/csh
/bin/tcsh

then you are working in the CSH-family and need to follow the alternate series of in-
structions given.

In the modern world of Linux, it is quite common for the default shell to be something
called binbash an open-source version of binsh.

21

22

1.10.1 The path or PATH

Another important variable is the “path” or “PATH”. The value path variable tells where
the working shell to look for executable files. Usually, executables are stored in a sub
directory “bin” of some directory. Because there may be many software packages installed
on a system, there may be many such locations. If an executable file is not on the users’
path, then the shell cannot see it.

To find out what paths you can access, which is to say, which executables your shell
can see, type

$ echo $path
or

$ echo $PATH

W.”

The result will be a listing, separated by colons “:” of paths or by spaces “” to executable
programs.

1.10.2 The CWPROOT variable

The variable PATH is important, but SHELL and PATH are not the only possible envi-
ronment variable. Often programmers will use an environment variable to give a users’
shell access to some attribute or information regarding a specific piece of software. This
is done because sometimes software packages are of restricted interest.

For SU the path CWPROQT is necessary for running the SU suite of programs. We
need to set this environment variable, and to put the suite of Seismic Unix programs on
the users’ path.

1.11 Shell configuration files

Because the users’ shell has as an attribute a natural programming language, many
configurations of the shell environment are possible. To find the configuration files for
your operating system, type

$ 1s -a <--- show directory listing of all
files and sub directories
$ pwd <--- print working directory

then the user will see a number of files whose names begin with a dot ”.”.

1.12 Setting up the working environment

One of the most difficult and confusing aspects of working on Unix-like systems is en-
countered right at the beginning. This is the problem of setting up user’s personal
environment. There are two sets of instructions given here. One for the CSH-family of
shells and the other for the SH-family.

22

23

1.12.1 The CSH-family

Each of the shell types returned by $SHELL has a different configuration file. For the
csh-family (tcsh,csh), the configuration files are “.cshre¢” and “.login”. To configure the
shell, edit the file .cshrc. Also, the “path” variable is lower case.

You will likely find a line beginning with

set path=(
with entries something like

set path=(/1ib “/bin /usr/bin/X11 /usr/local/bin /bin
/usr/bin . /usr/local/bin /usr/sbin)

Suppose that the Seismic Unix package is installed in the directory
/usr/local/cwp

on your system.
Then we would add one line above to set the “CWPROOT” environment variable.
And one line below to define the user’s “path”

setenv CWPROOT /usr/local/cwp

set path=(/lib "/bin /usr/bin/X11 /usr/local/bin /bin
/usr/bin . /usr/local/bin /usr/sbin)

set path=($path $CWPROOT/bin)

Save the file, and log out and log back in. You will need to log out completely from the
system, not just from particular terminal windows.
When you log back in, and pull up a terminal window, typing

$ echo $CWPROOT

will yield

/usr/local/cwp

and

$ echo $PATH

will yield

/1ib /u/yourusername/bin /usr/bin/X11 /usr/local/bin /bin

/usr/bin . /usr/local/bin /usr/sbin /usr/local/cwp/bin

23

24

1.12.2 The SH-family

The process is similar for the SH-family of shells. The file of interest has a name of the
form “.profile,” .bashrc,” and the “.bash_profile.” The “.bash_profile” is read once by the
shell, but the “.bashrc” file is read everytime a window is opened or a shell is invoked.
(Or vice versa, depending on the system. Mac OS X seems to have a strange convention.)
Thus, what is set here influences the users complete environment. The default form of
this file may show a path line similar to

PATH=$PATH:$HOME/bin: . :/usr/local/bin
which should be edited to read

export CWPROOT=/usr/local/cwp
PATH=$PATH:$HOME/bin: /usr/local/bin:$CWPROOT/bin: .

The important part of the path is to add the
: $CWPROOT/bin: .

on the end of the PATH line, no matter what it says.

The user then logs out and logs back in for the changes to take effect. In each case,
the PATH and CWPROQOT variables are necessary to be set for the users’ working shell
environment to find the executables of Seismic Unix.

1.13 Unix help mechanism- Unix man pages

Every program on a Unix or Unix-like system has a system manual page, called a man
page, that gives a terse description of its usage. For example, type:

$ man 1s

$ man cd

$ man df

$ man sh

$ man bash
$ man csh

to see what the system says about these commands. For example:

$ man 1s

LS(1) User Commands LS(1)

NAME
ls - list directory contents

24

25

SYNOPSIS
1s [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options
too.

-a, ——all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..
--MORE-

The item at the bottom that says -MORE— indicates that the page continues. To see
the rest of the man page for Is is viewed by hitting the space bar. View the Unix man
page for each of the Unix commands you have used so far.

Most Unix commands have options such as the Is -a which allowed you to see files
beginning with dot “.” or Is -1 which shows the “long listing” of programs. Remember
to view the Unix man pages of each new Unix command as it is presented.

References

Sobell, M. (2010), “A practical guide to Linux commands, editors, and shell program-
ming” Pearson Education Inc., Boston, MA.

25

Chapter 2

Lab Activity #1 - Getting started
with Unix and SU

Any program that has executable permissions and which appears on the users’ PATH
may be run by simply typing its name on the commandline. For example, if you have
set your path correctly, you should be able to do the following

$ suplane | suxwigb &
~ this symbol, the ampersand, indicates that
the program is being run in background
" the '"pipe" symbol

The commandline itself is the interactive prompt that the shell program is providing so
that you can supply input. The proper input for a commandline is an executable file,
which may be a compiled program or a Unix shell script. The command prompt is saying,
"Type program name here.”

Try running this command with and without the ampersand &. If you run

$ suplane | suxwigb

The plot comes up, but you have to kill the plot window before you can get your com-
mandline back, whereas

$ suplane | suxwigb &

allows you to have the plot on the screen, and have the commandline.
To make the plot better we may add some axis labeling;:

$ suplane | suxwigb title="suplane test pattern"
labell="time (s)" label2="trace number" &

" Here the command is broken across a line
so it will fit this page of this book.
On your screen it would be typed as one
long line.

26

time (s)

trace number

10 20 30
0
r
r
0.05- g
r
r !
'r, r
L)
0.10+ } }
418
H)
mmnm'b‘mnm
)
1
0.15+ } }}
[Ty
r
r
r
}
0.204 {
0.254

suplane test pattern

Figure 2.1: The suplane test pattern.

27

27

28

to see a test pattern consisting of three intersecting lines in the form of seismic traces.
The data consist of seismic traces with only single values that are nonzero. This is
variable area display in which each place where the trace is positive valued is shaded
black. See Figure 2.1.

Equivalently, you should see the same output by typing

$ suplane > junk.su
$ suxwigb < junk.su title="suplane test pattern"
labell="time (s)" label2="trace number" &

Finally, we often need to have graphical output that can be imported into documents.
In SU we have graphics programs that write output in the PostScript language

$ supswigb < junk.su title="suplane test pattern"
labell="time (s)" label2="trace number" > suplane.eps

2.1 Pipe |, redirect in < , redirect out >, and run
in background &

In the commands in the last section we used three symbols that allow files and programs
to send data to each other and to send data between programs. The vertical bar | is
called a “pipe” on all Unix-like systems. Output sent to standard out may be piped from
one program to another program as was done in the example of

$ suplane | suxwigb &

which, in English may be translated as "run suplane (pipe output to the program)
suxwigb where the & says (run all commands on this line in background).” The pipe
| is a memory buffer with a “read from standard input” for an input and a “write to
standard output” for an output. You can think of this as a kind of plumbing. A stream
of data, much like a stream of water is flowing from the program suplane to the program
suxwigb.

The “greater than” sign > is called “redirect out” and

$ suplane > junk.su

says "run suplane (writing output to the file) junk.su. The > is a buffer which reads
from standard input and writes to the file whose name is supplied to the right of the
symbol. Think of this as data pouring out of the program suplane into the file junk.su.
The file junk.su then, is like a bucket holding the data.

The “less than” sign < is called “redirect in” and

$ suxwigb < junk.su &

says "run suxwigb (reading the input from the file) junk.su (run in background).

28

29

10 20 30

a) trace number D) trace number
! ‘

0.05-)

0.104

. 604

time (s)
Freq. Hz

0.15+
80

0.20 ’ b 1004

1204
0.25+

suplane test pattern

Figure 2.2: a) The suplane test pattern. b) the Fourier transform (time to frequency)
of the suplane test pattern via suspecfx.

e program | program = pipe from program to program

e program > file = pour data from program to file (redirect out)

e program < file = pour data from file to program (redirect in)

e program ... & = run program in background

2.2 Stringing commands together

We may string together programs via pipes (|), and input and output via redirects (>)
and (<). An example is to use the program suspecfx to look at the amplitude spectrum
of the traces in data made with suplane:

$ suplane | suspecfx | suxwigb & —--make suplane data, find
the amplitude spectrum,
plot as wiggle traces

Equivalently, we may do

$ suplane > junk.su --make suplane data, write to a file.

$ suspecfx < junk.su > junkl.su --find the amplitude spectrum, write to
a file.

$ suxwigb < junkl.su & -—- view the output as wiggle traces.

29

30

This does exactly the same thing, in terms of final output as the previous example,
with the exception that here, two files have been created. See Figure 2.2.

2.2.1 Questions for discussion
e What is the Fourier transform of a function?
e What is an amplitude spectrum?

e Why do the plots of the amplitude spectrum in Figure 2.2 appear as they do?

2.2.2 The FFT versus the DFT

Another example of the Fourier transform is the comparison of the FFT (Fast Fourier
Transform) and the ordinary discrete Fourier transform (DFT). The FFT exploits some
of the symmetries in the digital representation of the Fourier transform to produce faster
algorithm. There is a difference in the performace of these two versions of the same
transform.

We can make some constant frequency data with suvibro. The program suvibro is
used to simulate vibroseis sweeps, but it also may be used to simulate constant frequency
signals. For example

$ suvibro £1=30 £2=30 t1=0 t2=0 tv=100 > junkl.su
$ suvibro f1=31 £2=31 t1=0 t2=0 tv=100 > junk2.su
suxgraph < 30hz.su &

suxgraph < 31lhz.su &

susum junkl.su junk2.su > junk.su

suxgraph < junk.su

&hH H P &P

generate, respectively 30 Hz and 31 Hz cosine waves. You might have to stretch the
suxgraph to see the plots properly. Note the beat frequency of 1 Hz in summed version
of the file junk.su. The signals differ by 1 Hz, so constuctively and destructively interfere
with this fequency.

If we want to show the spectrum of these signals we can use the FF'T algorithm

$ suspecfx < junk.su | suxwigb labell="Frequency Hz" label2="Spectral Amplitude"&
Alternatively the spectrum may be computed via the DET
$ suslowft < junk.su | suamp mode=amp | suxwigb &

This will take considerably more time (hence the name) than the FFT version. The extra
call to suamp is necessary because the output from suslowft are the real and imaginary
parts of the Fourier transform output. The amplitude spectrum is the modulus of these
complex numbers.

The corresponding FFT that outputs real and imagiary parts

$ sufft < junk.su | suamp mode=amp | suxwigb &

30

31

/£ 104/Sqndsin~mpa punipur mmaydiy
0] 1osmo1q 10K 13 ‘GO SPIM PHOM
Ay} uo ApINg SIY) $53908 0],

Q661 Isndny

s

S1e reuondo N

ou 10 SK [u/4]

J[qeLreA IeA

opou Jeyndwod pu

Joquinu u

Queua[y]

JUSWIUOIIAUD AU

K1030211p P

x ssaxd

pue £33 [01UOD UMOP PloY X/11D

19)ydwed siy) ur pasn suoneiraiqqy

pIed 90UAIdJAI
SpUBWIWIODd XIU)

SIDIANYIS ADO0OTONHOI]L NOILVINIOAN] ALISYIAINN

8086'£L09

'SOLIOJOAIP WAISKS

10U ‘193250 PAYUI[I SALIOIOAIP SIAsN ATUO— QWIOIYD) UO PI[BISUI 2IeM}JOS 93 asn AJuo
ued nok ‘QuioIy)) ojul pa330] are nok JI “IOAIMOH “BSIdA 9DIA puUR ‘J[eqo)) ojul pa33o] are nok
UQYM UDAD S[1J dwory)) InoK “d[dwexa 10j ‘§$008 ued NoK Jey) Suedw WoIsAS 91y pareys SiyL,

/ojuiz3/30pl/N/N/ Lally/1981S/90plN/N/ 1- Aw

1101U9 pInom Y ‘K103011p OJUTZq
SIY 0} AI0J0AIIP [9)S SIY WOIJ [9[1J,, SAOW 0} PAJUBM d0(] UYOf J1 ‘9[dweXa 10, "SI[1] UddMIaq
SYUI] oTIfoqUIAS ew Jo “so[1j Kdod ‘Sa[1j 9AOW O} SPUBWIWIOD XTU() ATRUIPIO 9] AN UBD NOX

JEEIN
ojur pag3of A[emoe s,oys Y3noy) UQAD ‘SI[IJ OJUIZH IY 39S [[,dYS ‘S[1J I SIS AYS UYM MON

/oyuizamaqell/n/N/ po

1I3JUD P[NOM S “JUNODOE OJUIZH
19y U0 91} © 103 0] SJuBM PUB ‘[99)S UO JUNOIJL 13y ojul Pa330[St 31qqey] eoIssaf Ji ‘opdwexa 104

"UWDUALIST
10} QUIBUIdSN UMO INOK 9)mIsqns pue ‘@aoqe 39s nok se jsnf uonezifeyrdes ay) asn nok aIns og

/dS/eumuiasn/mnu/ pd
JOJUIZH /WD ULISN NN/ PO
J1991S/2uID1L12SN NN/ PO
JOUIZ/UDULISHITYN]/ PO
Areqo)/upuiasn/n/N/ pd
JAWOIYD)/AUDULIIST YN/ PO

[wRISAS Joylo Aue woij £1019211p WdISAS Aue 0] 193 0] AN 0) SPUBIIWIIOD YY) AIB I "SIAYI0
Ay} Jo Aue uo so[1y 1ok 03 123 ued nok ‘ojur pag3of are noA s1INdwod ASAYY JO YIIYM Jojew ON

'SJUNOJOL JABY NOA UDIYM UO SISOY XIU[) [EIIUID Y} J0J PAWEBU SILIOJIAIIP Ul “YSIP dUO U0
Arear a1e so[1y oA jeyy sueaw Jey], "(SAN) J0AIS (1] JIOMION Y} UO Paio)s Ak JS/SUAV.LS
pue ‘ojuizH ‘191§ ‘oulz J[eqo)) “dwoiy)) srndwod xiup [enudd SN Y} U0 PIALS SI[1]

9|1y SIN yum Bunjiopp

ity References

1vers

UNIX Quick Reference card pl. From the Un

Figure 2.3

31

32

*(4) YsuaIse ue Aq pasgewr asoy) 1daoXe ‘pUBMIIOd YIed JO Pud Ay 18 NMN.LAY SsId

112Ys wioAf 11X

u qol punoada.iof aumsay
u qol puno.3yonq aumsay
PUNOAZNIDG U PUDUUIOD UNY
u qol punoadyonq puadsng
ssa004d Jua.Lind puadsng

U §5220.4d 200y

SIDIS SMIDIS §S2004d JULI]
uqol iy

sqofl Jo js1) julag

SpU02Is u 1of daajs

mdino u2a.0s aumsay
Buljjoaos U228 dojg
$as5200.4d ydn.ipuf
uondrsaq

jlv'e]
[u] 5
[u%] 3q
pupUUIod
ug, doys

« Z/HD
Ue- 1M
sd

[ugsl iy
sqofl

u dogys

+ b/ImD

= S/MD

= O/I1D
puewrio))

|]0IU0)) $S920.4d

4211dwod [pIsvg o [1fo-] od

42)1dwi0d //unario,] dlifo-] L1y

$.40.449 10f 2P0 D) YY) Al
42pduod o [[fo-] 2

uondrsaq puewiuIo)
J911dwon

£ Jo pua mding Jey

JJo unundaq mdmo Jpeay
saoud.12ff1p aq1f s1SrT o IS 13p

wd yoyput) saui] sindinQ J owd, doi3
Janf (aaowau) 219121 Fat

Zfsv [f opf auuay o 1faw

sa0a1d aunp-u oyt f nds f [u-] nids
Jos Kwonaqoydyy Juos

o onut [fa11f &do) o ifdo

sajrf omy aanduio)) 7 1f dwo

1 Jo apowr uondaroad 28uvy?) Japou powryd
cfomn zf® [[fsaiuainouo) &< 1fred
22405 £q Sju21U00 211 ISIT J a1ow
a1 fo s1uau00 ISIT Jw

JUN0D ADYD P pioMm ‘Ul fom
4011pa X [po

A01PD UDDLISTINS SIDULTT [J] soewd
1011p2 U2408]INf 1A [f] 14
uondrsaq puBwIwo)

uonendiueyy a|14

pLI0IN 2UljUO)

Jof Lnyua ppnuvut XN
[t fo uonvdrfiou Juvisuy
A2SN 0] [0l pUIg

utuLz) Suians doig

J 01 uoISS2S PUIULIAL 2ADS
adqurad auip o1 f apf mdinQ
uondrsaq

wed|

uu

2upu uewx
[wA] y1q
2WDULISN [TRW
uo1ss2§

X9

[f] 1duos

S aanud g- ady
puewIIo))

disH % ‘uonesiunwwo?) ‘indinQ

U pupUUIoD JUdd.4 JIUgns u;
spupuo Juada.4 Kvjdsiq K10181y
£40122.41p SUTYLOM JULLJ pmd
uonvuLLoful 123utf 28uvy) uyo
uonpuLiofur 1asn ndmo [owmiiasn] 193ury
4251 Juaaind Kvjdsicq weoym
s.42sn ul pagsoy 1sry oym

iy R VP UL qep

vjonb ys1p vjdsiq 'lonb

SONIDA JUIUWUOLIAUD JULL] [2wmu] Auduud
saspip pupuiiod {vjdsiq [awu] seie
11ap i s IsrT [f] 1-51
Ktoppa.p ut sajif sy (4] [p] st
uondrLsaq puewuo)

snjejg juswuolIinug

2]GVLIDA JUIUIUOLIAUD IAOUIDA
A 2npa 0] DA AUD 1S

UOISSS [DUIULID] PUT]

apou 210w 01 UISO

[2WDU SDID PUDWIUIOD dAOUDY
SDID pUDUILOD 2IDIAD)
piomssvd 23uny)

Zp S [p K40122.41p dumuay

p K10p02.1p 01 [211f 2d0)4

P £10102.41p 200wy

p £10102.1p Mau 212D

p K10102.41p 01 28uvYy)
uondrsaq

[zowmu [aumu Audlesun
A 2uDU AUJRS
mogof

pu widofx

[2wpu serfeun
Zawmu [aunu seife
pmssed

Zp [p AW

PIg) 1f s

P aipui

P Iipyw

Ppo

puewio))

|01U0Y) JUBWUOIIAUT

UNIX Quick Reference card p2.

Figure 2.4

32

33

2.3 Unix Quick Reference Cards

The two figures, Fig 2.3 and Fig 2.4 are a Quick Reference cards for some Unix commands
References

Sobell, M. (2010), “A practical guide to Linux commands, editors, and shell program-
ming” Pearson Education Inc., Boston, MA.

33

Chapter 3

Lab Activity #2 - viewing data

Just as scratch paper is paper that you use temporarily without the plan of saving for
the long term, a “scratch directory” is temporary working space, which is not backed up
and which may be arbitrarily cleared by the system administrator. Each computer in
this lab has a directory called /scratch that is provided as a temporary workspace for
users.

On our lab system there is a shared scratch space called /gpfc. It is in this location
that you will be working with data. Create your own directory via:

$ mkdir /gpfc/yourusername

Here “yourusername” is the actual username that you are designated as on this system.
Please feel free to ask for help as you need it.

A directory like /gpfc may reside physically on the computer where you are sitting,
or it may be remotely mounted. In computer environments where the directory is locally
on the a given computer, you will have to keep working on the same system. If you
change computers, you will have to transfer the items from your personal scratch area to
that new machine. In labs where the directory is remotely mounted, you may work on
any machine that has the directory mounted.

Remember: /scratch directories are not backed up. If you want to save materials
permanently, it is a good idea to make use of a USB storage device.

3.0.1 Data image examples

7w

Three small datasets are provided. These are labeled “sonar.su,” “radar.su,” and “seis-

mic.su” and are located in the directory
/data/cwpscratch/Datal/

We will pretend that these data examples are “data images,” which is to say these are
examples that require no further processing.
Do the following:

34

35

$ cd /gpfc/yourusername (this takes you to /gpfc/yourusername)

This "$" represents the prompt at the beginning of the commandline.
Do not type the "$" when entering commands.

mkdir Templ (this creates the directory Templ)
cd Templ (change working directory to Templ)
cp /data/cwpscratch/Datal/sonar.su

cp /data/cwpscratch/Datal/radar.su

cp /data/cwpscratch/Datal/seismic.su

€hH H P H P

~

means "the current directory"
$ 1s (should show the file sonar.su)

For the rest of this document, when you are directed to make “Temp” directories, it
will be assumed that you are putting these in your personal scratch directory.

3.1 Viewing an SU data file: Wiggle traces and
Image plots

Though we are assuming that the examples sonar.su, seismic.su, and radar.su are
finished products, our mode of presentation of these datasets may change the way we
view them entirely. Proper presentation can enhance features we want to see, suppress
parts of the data that we are less interested in, accentuate signal and suppress noise.
Improper presentation, on the other hand, can take turn the best images into something
that is totally useless.

3.1.1 Wiggle traces

A common mode of presentation of seismic data is the “wiggle trace.” Such a represen-
tation consists of representing the oscillations of the data as a graph of amplitude as a
function of time, with successive traces plotted side-by-side. Amplitudes of one polarity
(usually positive) are shaded black, where as negative amplitudes are not shaded. Be
aware that such presentation introduces a bias in the way we view the data, accentuating
the positive amplitudes. Furthermore, wiggle traces may make dipping structures appear
fatter than they actually are owing to the fact that a trace is a vertical slice through the
data.

In SU we may view a wiggle trace display of data via the program suxwigb. For
example, viewing the sonar.su data as wiggle traces is done by “redirecting in” the data
file into “suxwigh”

35

This is a literal dot ".", which

36

$ suxwigb < sonar.su &

the ampersand (&) means "run in background"
so you get your commandline back

This should look horrible! The problem is that there are 584 wiggle traces, side by
side. Place the cursor on the plot and drag, while holding down the index finger mouse
button. This is called a “rubberband box.” Try grabbing a strip of the data of width less
than 100 traces, by placing the cursor at the top line of the plot, and holding the index
finger mouse button while dragging to the lower right. Zooming in this fashion will show
wiggles. The less on here is that you need a relatively low density of data on your print
medium for wiggle traces.

Place the mouse cursor on the plot, and type "q” to kill the window.

Try the seismic.su and the radar.su data as wiggle traces via

$ suxwigb < seismic.su &
$ suxwigb < radar.su &

In each case, zoom in on the data until you are able to see the oscillations of the data.

3.1.2 Image plots

The seismic data may be thought of as an array of floating point numerical values, each
representing a seismic amplitude at a specific (¢, z) location. A plot consisting of an array
of gray or color dots, with each gray level or color representing the respective value is
called an “image” plot.

If we view An alternative is an image plot:

$ suximage < sonar.su &

This should look better. We usually use image plots for datasets of more than 50 traces.
We use wiggle traces for smaller datasets.

3.2 Greyscale

There are only 256 shades of gray available in this plot. If a single point in the dataset
makes a large spike, then it is possible that most of the 256 shades are used up by that
one amplitude. Therefore scaling amplitudes is often necessary. The simplest processing
of the data is to amplitude truncate (“clip”) the data. (The term “clip” refers to old
time strip chart records, which when amplitudes were too large appeared if someone had
taken scissors and clipped of the tops of the sinusoids of the oscillations.) Try:

$ suximage < sonar.su perc=99 &
$ suximage < sonar.su perc=99 legend=1

36

37

200 400

0.05

0.10

0.15

0.20

0.25

Figure 3.1: Image of sonar.su data (no perc). Only the largest amplitudes are visible.

37

38

200 400

0.05

0.10

0.15

Figure 3.2: Image of sonar.su data with perc=99. Clipping the top 1 percentile of
amplitudes brings up the lower amplitude amplitudes of the plot.

38

39

The perc=99 passes only those items of the 99th percentile and below in amplitude. (You
may need to look up “percentile” on the Internet.) In other words, it “clips” (amplitude
truncates) the data to remove the top 1 per cent of amplitudes, which might suck up the
majority of shades of gray. Try different values of "perc” to see what this does.

3.3 Legend ; making grayscale values scientifically
meaningful

To be scientifically useful, which is to say “quantitative” we need to be able to translate
shades of gray into numerical values. This is done via a gray scale, or "legend”. A
“legend” is a scale or other device that allows us to see the meanings of the graphical
convention used on a plot. Try:

$ suximage < sonar.su legend=1 &

This will show a grayscale bar.

There are a number of colorscales available. Place the mouse cursor on the plot and
press “h” you will see that further pressings of “h” will re plot the data in a different
colorscale. Now press “r” a few times. The “h” scales are scales in “hue” and the “r”
scales are in red-green-blue (rgb). It is important to see that the brightest part of each
scale is chosen to emphasize a different amplitude.

With colormapping some parts of the plot may be emphasized at the expense of other
parts. The issue of colormaps often is one of selecting the location of the “bright part”
of the colorbar, versus darker colors. Even perfectly processed data may be rendered
uninterpretable by a poor selection of colormapping. This effect may be seen in Figure 3.4.

Repeat the previous, this time clipping by percentile
$ suximage < sonar.su legend=1 perc=99 &

The ease at which colorscales are defined, and the fact that there are no real standards
on colorscales, mean that effectively every color plot you encounter requires a colorscale
for you to be able to know what the values mean. Furthermore, some colors ranges are
brighter than others. By moving the bright color to a different part of the amplitude
range, you can totally change the image. This is a source of richness of display, but it is
also a potential source of trouble, if the proper balance of color is not chosen.

3.4 Display balancing and display gaining

A common data amplitude balancing is to balance the colorscale on the median values
in the data. The “median” is the middle value, meaning that half the values are larger
than the median value and half the data are less than the median value. Thus, the traces
are normalized by this middle value.

39

200 400

0.05

0.10

O1lo.15

Figure 3.3: Image of sonar.su data with perc=99 and legend=1.

40

40

=

ximage

E

ximage

E

=

ximage

E

O

ximage

=llmllx]

41

Figure 3.4: Comparison of the default, hsv0, hsv2, and hsv7 colormaps. Rendering these

plots in grayscales emphasizes the location of the bright spot in the colorbar.

41

200 400

0.05

0.10

O1lo.15

Figure 3.5: Image of sonar.su data with perc=99 and legend=1.

42

42

43

Another possibility is to scale traces by dividing by some constant value. For example
dividing each trace by the square root of the average of the sum of the square of its values,
the so called “root mean squared” (RMS) amplitude.

Type these commands to see that in SU:

$ sunormalize norm=balmed < sonar.su | suximage legend=1
$ sunormalize norm=balmed < sonar.su | suximage legend=1 perc=99

You may find perc=99 to be useful. You may find that you have to apply an “RMS”
balancing to make the data look a bit more uniform

$ sunormalize norm=balmed < sonar.su |

sunormalize norm=rms | suximage legend=1
$ sunormalize norm=balmed < sonar.su |
sunormalize norm=rms | suximage legend=1 perc=99

Again, these commands are written as one long line, and are broken here to fit on the
page. You may zoom in on regions of the plot you find interesting.

If you put both the median normalized and simple perc=99 files on the screen side-
by-side, there are differences, but these may not be striking differences. The program
suximage has a feature that the user may change colormaps by pressing the “h” key
or the “r” key. Try this and you will see that the selection of the colormap can make
a considerable difference in the appearance of the image. Even with the same data, the
colormap.

For example in Figure 3.7 we see the result of applying median balancing. We might
consider applying sunormalize directly to the seismic data

$ suximage < seismic.su wbox=250 hbox=600 cmap=hsv4 clip=3 title="no median" &
compared with applying the median balancing

$ sunormalize norm=balmed < seismic.su |
suximage wbox=250 hbox=600
cmap=hsv4 clip=3 title="median filtering" &

This result looks bizarre because the traces individually have different median values and
consequently have different ranges of amplitudes. An improved picture may be obtained
by applying an RMS normalization to the traces after they have been median filtered
via,

$ sunormalize norm=balmed < seismic.su | sunormalize norm=rms |
suximage wbox=250 hbox=600
cmap=hsv4 clip=3 title="median filtering" &

In each of these examples, the line is broken to fit on the page. When you type this, the
pipe | follows immediately after the seismic.su.

There are other possibilities. We may consider simply normalizing the data by the
maximum or minimum value, or by some other constant. Furthermore, we have the
question of whether the process be applied trace by trace, or over the whole panel of
data.

43

200

0.05

Figure 3.6: Image of sonar.su data with

44

400

median balancing and perc=99

44

= ximage

=B

0

(E8357.9,0,30397,-559)

58?00

o, 15

pay

median

no median

45

Figure 3.7: Comparison of seismic.su median-normalized, with the same data with no
median balancing. Amplitudes are clipped to 3.0 in each case. Notice that there are
features visible on the plot without median balancing that cannot be seen on the median

normalized data.

45

46

3.5 Homework problem #1 - Due dates Thursday 3
Sept 2015 and Tuesday 8 September 2015

Repeat display gaining experiments of the previous section with “radar.su” and “seis-
mic.su” to see what median balancing, and setting perc=... does to these data.

e Capture representative plots with axes properly labeled. You can use the Linux
screen capture feature, or find another way to capture plots into a file, (such as
by using supsimage to make PostScript plots) Feel free to use different values of
perc and different colormaps than were used in the previous examples. Is median
filtering better? Is it worse? Can you simply change the clip value and get a better
picture?

The OpenOffice (or LibreOffice) Word wordprocessing program is an easy program
to use for this.
e Prepare a report of your results. The report should consist of:
— Your plots (you are telling a story, show only images are relevant to your
story)
— a short paragraph describing what you saw. Think of it as a figure caption.
— a listing of the actual commandlines that you ran to get the plots.
— Not more than 3 pages total!
— Make sure that your name, the due date, and the assignment number are at

the top of the first page.

e Save your report in the form of a PDF file, and email to john@dix.mines.edu

3.6 Concluding Remarks

There are many ways of presenting data. Two of the most important questions that
a scientist can ask when seeing a plot are "What is the meaning of the colorscale or
grayscale of a plot?” and ”What normalization or balancing has been applied to the data
before the plot?” The answers to these questions may be as important as the answer to
the question "What processing has been applied to these data?”

3.6.1 What do the numbers mean?

The scale divisions seen on the plots in this chapter that have been obtained by running
suximage with legend=1 show numerical values, values that are changed when we
apply display gain. Ultimately, these numbers relate to the voltage recorded from a
transducer (a geophone, hydrophone, or accelerometer). While in theory we should be
able to extract information about the size of the ground displacement in, say micrometers,

46

47

or the pressure field strength in, say megapascals there is little reason to do this. Owing
to detector and source coupling issues, and the fact that data must be gathered quickly,
we really are only interested in relative values.

References

Stockwell, Jr. J. W. and J. K. Cohen (2008) The new SU users manual, available from
http:cwp.mines.edu/cwpcodes

47

Chapter 4

Help features in Seismic Unix

Scientific data processing and manipulation packages usually contain many commands
and options. Seismic Unix is no exception. As with any package there are help features
to help you navigate the collection of programs and modules. The first thing that you
must do with any software package is to locate and learn to use the help features in
the package. Usually these help mechanisms are not very “helpful” to the beginner, but
are really more like quick reference guides for people who are already familiar with the
package.
There are a number of help features in SU; here we will discuss only three.

4.1 The selfdoc

All Seismic Unix programs have the feature that if the name of the program is typed
with no arguments, a self-documentation feature called a selfdoc is listed.
Try:

suplane
suximage
suxwigb
sunormalize

&hH A H H

For example:
$ suplane
yields

SUPLANE - create common offset data file with up to 3 planes
suplane [optional parameters] >stdout

Optional Parameters:
npl=3 number of planes

48

49

nt=64 number of time samples
ntr=32 number of traces
taper=0 no end-of-plane taper
= 1 taper planes to zero at the end
offset=400 offset
dt=0.004 time sample interval in seconds
...plane 1 ...
dip1=0 dip of plane #1 (ms/trace)
lenl= 3*ntr/4 HORIZONTAL extent of plane (traces)
ctl= nt/2 time sample for center pivot
cxl= ntr/2 trace for center pivot
...plane 2 ...
dip2=4 dip of plane #2 (ms/trace)
len2= 3*ntr/4 HORIZONTAL extent of plane (traces)
ct2= nt/2 time sample for center pivot
cx2= ntr/2 trace for center pivot
--More--

As with the Unix man pages, typing the space bar shows the rest of the help page.

Each of these programs has a relatively large number of possible argument set-
tings. The programs “suxwigb” and “suximage” both call programs named, respectively,
“xwigh” and “ximage”. Type:

$ ximage
$ xwighb

All of the setting for “xwigh” and “ximage” apply to “suxwigh” and “suximage.”
That is a lot of settings.

Correspondingly, there are plotting programs that write out PostScript graphics out-
put for plotting

supsimage
psimage
supswigb
pswigb
supswigp
pswigp

The “SU” versions of these programs call the respective programs that do not have
the “su” prefix.

€hH P fH H P PH

4.2 Finding the names of programs with: suname

SU is big package containing several hundred programs as well as hundreds of library
functions, shell scripts, and associated files. Occasionally we would like to see the total
scope of the package we are working with.

49

50

For an inventory of the SU programs, typing
$ suname
yields

————— CWP Free Programs -----
CWPROOT=/usr/local/cwp

Mains:

In CWPROOT/src/cwp/main:

CTRLSTRIP - Strip non-graphic characters

DOWNFORT - change Fortran programs to lower case, preserving strings
FCAT - fast cat with 1 read per file

ISATTY - pass on return from isatty(2)

MAXINTS - Compute maximum and minimum sizes for integer types

PAUSE - prompt and wait for user signal to continue

T - time and date for non-military types

UPFORT - change Fortran programs to upper case, preserving strings

* X X X X % X ¥

In CWPROOT/src/par/main:

A2B - convert ascii floats to binary

B2A - convert binary floats to ascii

CSHOTPLOT - convert CSHOT data to files for CWP graphers

DZDV - determine depth derivative with respect to the velocity ",
FARITH - File ARITHmetic -- perform simple arithmetic with binary files
FTNSTRIP - convert a file of binary data plus record delimiters created
FTNUNSTRIP - convert C binary floats to Fortran style floats

GRM - Generalized Reciprocal refraction analysis for a single layer

H2B - convert 8 bit hexidecimal floats to binary

--More (3%)—-

Hitting the space bar shows the rest of the page. The suname output shows every
library function, shell script, and main program in the package, and may be too much
information for everyday usage.

What is more common is that we might want a bit more information than a selfdoc,
but not a complete listing. This is where the sudoc feature is useful. Typing

$ sudoc NAME

yields the sudoc entry of the program NAME.
For example we might be interested in seeing information about suplane

$ sudoc suplane

and comparing that with the selfdoc for the same program

20

51

$ suplane

As the number of SU programs you come in contact increases, you will find it useful
to continually be referring to the listing from suname.

The sudoc feature is an alternative to Unix man pages. The database of sudocs is
captured from the actual selfdocs in the source code automatically via a shell script, so
these do not go out of step with the actual code, the way a separately written man page
might.

4.3 Lab Activity #3 - Exploring the trace header
structure

You may have noticed that the plotting programs seem to know a lot about the data you
have been viewing. Yet, you have never been asked to give the number of samples per
trace or the number of traces. For example

$ suximage < sonar.su perc=99 &

shows a plot without being told the dimensions of the data.

But how did the program know the number of traces and the number of samples per
trace in the data? The program knows because this, and all other SU programs read
information from a “header” that is present on each seismic trace.

4.3.1 What are the trace header fields-sukeyword?
If you type:

$ sukeyword -o

you will obtain a listing of the file segy.h, which defines the SU trace header format. The
term “segy” is derived from SEG-Y a popular data exchange standard established by the
Society of Exploration Geophysicists (SEG) in 1975 and later revised in 2005. The SU
trace header is largely the same as that defined for the SEG-Y format.

The first 240 bytes of each seismic trace in a SEG-Y dataset consist of this trace
header. The data are always uniformly sampled in time, so the “data” portion of the
trace, consisting of amplitude values only, follows immediately after the trace header.
While it may be tempting to think of a seismic section as an “array” of traces, in the
computer, these traces simply follow one after the other.

The part of the listing from sukeyword that is relevant at this point is

.. .skipping

o1

52

typedef struct { /* segy - trace identification header */

int tracl; /x Trace sequence number within line
--numbers continue to increase if the
same line continues across multiple
SEG Y files.
byte# 1-4
*/

int tracr; /* Trace sequence number within SEG Y file
-——each file starts with trace sequence
one
byte# 5-8

*/

int fldr; /% Original field record number
byte# 9-12
*/

int tracf; /x Trace number within original field record
byte# 13-16
*/

int ep; /* energy source point number
—-—--Used when more than one record occurs
at the same effective surface location.
byte# 17-20

*/

int cdp; /* Ensemble number (i.e. CDP, CMP, CRP,...)
byte# 21-24
*/

int cdpt; /* trace number within the ensemble
—-——each ensemble starts with trace number one.
byte# 25-28

*/

short trid; /* trace identification code:

-1 = Other
0 = Unknown
1 = Seismic data
2 = Dead

52

© 00 N O O b W

10
11
12

Dummy

Time break

Uphole

Sweep

Timing

Water break

Near-field gun signature
Far-field gun signature
Seismic pressure sensor
Multicomponent seismic sensor

- Vertical component

13 = Multicomponent seismic sensor

- Cross-line component

14 = Multicomponent seismic sensor

- in-line component

15 = Rotated multicomponent seismic sensor
- Vertical component

16 = Rotated multicomponent seismic sensor
- Transverse component

17 = Rotated multicomponent seismic sensor
- Radial component

18
19
20
21
22

23 ...

Vibrator reaction mass

Vibrator baseplate

Vibrator estimated ground force
Vibrator reference
Time-velocity pairs

N = optional use

(maximum N = 32,767)

Following are CWP id flags:

109
110

111 = Fourier transformed - unpacked Nyquist

autocorrelation
Fourier transformed - no packing
xr[0],xi[0], ., xr[N-1],xi[N-1]

xr[0],xi[0],...,xxr[N/2],xi[N/2]

112 = Fourier transformed - packed Nyquist

even N:
xr[0] ,xr[N/2],xr([1],xi[1], ...,

xr[N/2 -1],xi[N/2 -1]
(note the exceptional second entry)

odd N:
xr[0] ,xr[(N-1)/2] ,xr[1],xi[1], ...,

23

53

54

xr [(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2]
(note the exceptional second & last entries)
113 = Complex signal in the time domain

xr[0],xi[0], ..., xr([N-1],xi[N-1]

114 = Fourier transformed - amplitude/phase
afo],pl0], ..., a[N-1],p[N-1]

115 = Complex time signal - amplitude/phase
alo]l,plol, ..., a[N-1],p[N-1]

116 = Real part of complex trace from O to Nyquist

117 = Imag part of complex trace from O to Nyquist

118 = Amplitude of complex trace from O to Nyquist

119 = Phase of complex trace from O to Nyquist

121 = Wavenumber time domain (k-t)

122 = Wavenumber frequency (k-omega)

123 = Envelope of the complex time trace

124 = Phase of the complex time trace

125 = Frequency of the complex time trace

126 = log amplitude

127 = real cepstral domain F(t_c)= invfft[log[fft(F(t)]]

130 = Depth-Range (z-x) traces

201 = Seismic data packed to bytes (by supackl)

202 = Seismic data packed to 2 bytes (by supack2)
byte# 29-30

*/

short nvs; /* Number of vertically summed traces yielding
this trace. (1 is one trace,
2 is two summed traces, etc.)
byte# 31-32

*/

short nhs; /* Number of horizontally summed traces yielding
this trace. (1 is one trace
2 is two summed traces, etc.)
byte# 33-34

*/

short duse; /* Data use:
1 = Production
2 = Test
byte# 35-36
*/

o4

int offset; /* Distance from the center of the source point
to the center of the receiver group
(negative if opposite to direction in which
the line was shot).
byte# 37-40
*/

int gelev; /* Receiver group elevation from sea level
(all elevations above the Vertical datum are
positive and below are negative).

byte# 41-44

*/

int selev; /* Surface elevation at source.
byte# 45-48

*/

int sdepth; /* Source depth below surface (a positive number) .
byte# 49-52

*/

int gdel; /* Datum elevation at receiver group.
byte# 53-56

*/

int sdel; /* Datum elevation at source.
byte# 57-60

*/

int swdep; /* Water depth at source.
byte# 61-64

*/

int gwdep; /* Water depth at receiver group.
byte# 65-68

*/

short scalel; /* Scalar to be applied to the previous 7 entries
to give the real value.
Scalar = 1, +10, +100, +1000, +10000.
If positive, scalar is used as a multiplier,
if negative, scalar is used as a divisor.
byte# 69-70

95

55

*/

short scalco; /* Scalar to be applied to the next 4 entries
to give the real value.
Scalar = 1, +10, +100, +1000, +10000.
If positive, scalar is used as a multiplier,
if negative, scalar is used as a divisor.
byte# 71-72
*/

int sx; /* Source coordinate - X
byte# 73-76
*/

int sy; /* Source coordinate - Y
byte# 77-80
*/

int gx; /* Group coordinate - X
byte# 81-84
*/

int gy; /* Group coordinate - Y
byte# 85-88
*/

short counit; /* Coordinate units: (for previous 4 entries and
for the 7 entries before scalel)

Length (meters or feet)

Seconds of arc

Decimal degrees

Degrees, minutes, seconds (DMS)

S W N -
nmnun

In case 2, the X values are longitude and

the Y values are latitude, a positive value designates
the number of seconds east of Greenwich

or north of the equator

In case 4, to encode +-DDDMMSS

counit = +-DDD*10°4 + MMx*10"2 + SS,
with scalco = 1. To encode +-DDDMMSS.ss
counit = +-DDD*x10°6 + MM*10"4 + SS*x1072
with scalco = -100.

o6

56

57

byte# 89-90
*/

short wevel; /* Weathering velocity.
byte# 91-92
*/

short swevel; /* Subweathering velocity.
byte# 93-94
*/

short sut; /* Uphole time at source in milliseconds.
byte# 95-96
*/

short gut; /* Uphole time at receiver group in milliseconds.
byte# 97-98
*/

short sstat; /* Source static correction in milliseconds.
byte# 99-100
*/

short gstat; /* Group static correction in milliseconds.
byte# 101-102
*/

short tstat; /* Total static applied in milliseconds.
(Zero if no static has been applied.)
byte# 103-104

*/

short laga; /* Lag time A, time in ms between end of 240-
byte trace identification header and time
break, positive if time break occurs after
end of header, time break is defined as
the initiation pulse which maybe recorded
on an auxiliary trace or as otherwise
specified by the recording system
byte# 105-106
*/

short lagb; /* lag time B, time in ms between the time break

o7

58

and the initiation time of the energy source,
may be positive or negative
byte# 107-108

*/

short delrt; /* delay recording time, time in ms between
initiation time of energy source and time
when recording of data samples begins
(for deep water work if recording does not
start at zero time)
byte# 109-110
*/

short muts; /* mute time--start
byte# 111-112
*/

short mute; /* mute time——end
byte# 113-114
*/

unsigned short ns; /* number of samples in this trace
byte# 115-116
*/

unsigned short dt; /* sample interval; in micro-seconds
byte# 117-118

*/
short gain; /* gain type of field instruments code:
1 = fixed
2 = binary
3 = floating point
4 --—— N = optional use
byte# 119-120
*/

short igc; /* instrument gain constant
byte# 121-122
*/

short igi; /* instrument early or initial gain
byte# 123-124

o8

*/

short corr; /* correlated:

1 = no
2 = yes

byte# 125-126
*/

short sfs; /* sweep frequency at start
byte# 127-128
*/

short sfe; /* sweep frequency at end
byte# 129-130
*/

short slen; /* sweep length in ms
byte# 131-132

*/
short styp; /* sweep type code:
1 = linear
2 = cos-squared
3 = other
byte# 133-134
*/

short stas; /* sweep trace length at start in ms
byte# 135-136
*/

short stae; /* sweep trace length at end in ms
byte# 137-138
*/

short tatyp; /* taper type: 1=linear, 2=cos”2, 3=other
byte# 139-140
*/

short afilf; /* alias filter frequency if used
byte# 141-142
*/

29

59

60

short afils; /* alias filter slope
byte# 143-144
*/

short nofilf; /* notch filter frequency if used
byte# 145-146
*/

short nofils; /* notch filter slope
byte# 147-148
*/

short 1lcf; /* low cut frequency if used
byte# 149-150
*/

short hcf; /* high cut frequncy if used
byte# 151-152
*/

short 1lcs; /* low cut slope
byte# 153-154
*/

short hcs; /* high cut slope
byte# 155-156
*/

short year; /* year data recorded
byte# 157-158
*/

short day; /* day of year
byte# 159-160
*/

short hour; /* hour of day (24 hour clock)
byte# 161-162
*/

short minute; /* minute of hour
byte# 163-164
*/

60

61

short sec; /* second of minute
byte# 165-166

*/
short timbas; /* time basis code:
1 = local
2 = GMT
3 = other
byte# 167-168
*/

short trwf; /* trace weighting factor, defined as 1/2°N
volts for the least sigificant bit
byte# 169-170

*/

short grnors; /* geophone group number of roll switch
position one
byte# 171-172

*/

short grnofr; /* geophone group number of trace one within
original field record
byte# 173-174

*/

short grnlof; /* geophone group number of last trace within
original field record
byte# 175-176

*/

short gaps; /* gap size (total number of groups dropped)
byte# 177-178
*/

short otrav; /* overtravel taper code:
1 = down (or behind)
2 = up (or ahead)
byte# 179-180
*/

61

62

/* cwp local assignments */

float dl; /* sample spacing for non-seismic data
byte# 181-184

*/

float f1; /* first sample location for non-seismic data
byte# 185-188
*/

float d2; /* sample spacing between traces
byte# 189-192
*/

float f2; /* first trace location
byte# 193-196
*/

float ungpow; /* negative of power used for dynamic
range compression
byte# 197-200

*/

float unscale; /* reciprocal of scaling factor to normalize
range
byte# 201-204

*/

int ntr; /* number of traces
byte# 205-208
*/

short mark; /* mark selected traces
byte# 209-210
*/

short shortpad; /* alignment padding
byte# 211-212
*/

short unass[14]; /* unassigned--NOTE: last entry causes
a break in the word alignment, if we REALLY

62

63

want to maintain 240 bytes, the following
entry should be an odd number of short/UINT2
OR do the insertion above the "mark" keyword
entry
byte# 213-240

*/

#endif

float data[SU_NFLTS];

} segy;

Not all of these header fields get used all of the time. Some headers are more important
than others. The most relevant fields to normal SU usage are the header fields tracl,
tracr, dt, cdp, offset, sx, gx, sy, gy, and delrt.

To see the header field ranges on sonar.su, radar.su, and seismic.su type

$ surange < sonar.su

584 traces:

tracl 1 584 (1 - 584)
cdp 1 584 (1 - 584)
muts 75

ns 3000

dt 100

$ surange < radar.su
501 traces:

tracl 1 501 (1 - 501)
tracr 1 501 (1 - 501)

trid 1

ns 463

dt 800

hour 11

minute 3 33 (3 - 33)
sec 059 (41 - 7)

$ surange < seismc.su

801 traces:

tracl 1200 2000 (1200 - 2000)

tracr 67441 115081 (67441 - 115081)

f1dr 594 991 (594 - 991)
tracf 18 (2 -2)
ep 700 1100 (700 - 1100)

63

64

cdp 1200 2000 (1200 - 2000)

cdpt 18 (2-2)
trid 1

nhs 57 60 (60 - 60)
gelev -10

selev -6

scalel 1
scalco 1

sX 18212 28212 (18212 - 28212)
gx 15000 25000 (15000 - 25000)
counit 3

mute 48

ns 601

dt 4000

In each case, where four numbers appear, these are the minimum and maximum values
in the header followed by the first and last values in the data panel

You may use sukeyword to determine the meaning of any of the header field “key-
words” seen here via

$ sukeyword key

where "key” is the specific keyword. For example
$ sukeyword tracl

returns

int tracl; /* Trace sequence number within line
--numbers continue to increase if the
same line continues across multiple
SEG Y files.
*/

The first field int tells us that this is defined as type “integer” in the header. The short
description is the SEG’s definition for this field. This can be a big deal. Ofttimes users
will want to define decimal values for the header fields.

Please note that the keyword names we use here are not an industry standard, but are
peculiar to SU. These are an invention of Einar Kjartannson, the author of the original
suite of programs call SY, that later became the basis of the SU package

4.3.2 Types of data formats

In the world of scientific data there are three basic types of data formats. These are
acquisition, internal, and data exchange formats.

64

65

Acquisition formats

An acquisition format is a data format that is natural to, or convenient for a particular
instrument that is recording data. These are usually formats that are dictated by the
available storage and the process by which the instruments collects and digitizes the
data. Such formats often make sense in this usage, but may not be easy to work with in
computer programs. The data may be multiplexed, or may be compressed in some other
fashion

Examples of seismic acquisition formats include SEG-D, SEG-B, and SEG-2. Each
of these were designed in conjunction with the needs of multichannel seismic acquisition
systems. SEG-D is used for exploration seismic data, the other two are small seismograph
systems. Some data acquisition systems give the user the option of writing out data in
the “SEGY” format. However, in many cases this is not SEGY “by the book” but a
version that is called the DOS_SEGY format. DOS_SEGY is based loosely on the SEGY
format, but deviates from the official standard.

Internal formats

The term internal may refer to software, or to an organization such as a school or a
company. Internal formats are just that, internal. Data in such a format is not generally
for public consumption or for transport to other systems or exchange, but is a format
that may make it easier for a particular suite of programs to operate. The SU data
format is an internal format. Every commercial seismic package has its internal format.
Such systems would include PROMAX, DISCO, etc.

Some software packages that specialize in GPR or near surface (engineering geo-
physics) applications may expect data to be written in the SEG-2 or SEG-B formats.

Data excahnage formats

For data to be shared between companies or other users, yet a third class of data format
is required. Such formats are called data exchange formats. The most popular is SEG-Y
though it is possible that data in SEG-D, SEG-B, SEG-2, or other format.

Any format that is relatively stable may effectively become a data exchange format,
whether or not the originators of that format had this in mind. The SU data format is
treated as a data exchange format by some software developers.

4.4 Concluding Remarks

Every data processing package has help features and internal documentation. None of
these are usually perfect, and all are usually aimed at people who already understand
the package. Look for the help features and demos of a package.

When receiving a dataset, the most important questions that a scientist can ask about
a dataset that he or she receives are: “What is the format of the data?” ”Are the data

65

66

uniformly sampled?” For seismic data: “Have the headers been set?” and “What are
ranges of the the header values?”. “Do the header values make sense?”

Note also, that data coming in from the field, frequently requires that the headers be
set in the data. Transferring header information from seismic observers logs into seismic
trace headers is called “setting geometry.” Setting geometry can be one of the biggest
headaches in preparing data for processing.

Vendors may remap the SEG-Y header fields both in terms of the meaning of the
header field and with respect to the data type. Obtaining a “header map” of data when
you obtain seismic data can prevent confusion and save you a lot of work.

When receiving data on tape, remember that “tape reading is more of an art than a
science.” It is best to ask for data in a format you can use, rather than allow someone
else to dictate that format to you.

References

Stockwell, Jr. J. W. and J. K. Cohen (2008) The new SU users manual, available from
http:cwp.mines.educwpcodes

66

Chapter 5

Lab Activity #4 - Depth conversion
of “Data images”

Geophysical imaging, often called “migration” in the seismic context, is an example
of a general topic called “inverse-scattering imaging.” Simply stated, inverse scattering
imaging is the process of “making pictures with echos.” We have all encountered examples
of this in our daily lives.

Our eyes operate by making images of the world around us from scattered light. Med-
ical ultrasound uses the echos of high frequency sound waves to image structures within
the human body. Ultrasound is also used in an industrial setting for nondestructive test-
ing (NDT). Seismic prospectors look for oil using the echos of seismic waves. Earthquake
seismologists determine the internal structure of the deep earth with echos of waves from
earthquakes.

Near surface investigators use the echos of ground penetrating radar waves to image
objects in the shallow subsurface.

5.1 Imaging as the solution to an inverse problem

Acoustic and elastic waves echo off of jumps in the wavespeed and/or the density of the
medium. In the case of electromagnetic scattering, the signal is coming from a volume
of material or a layer, rather than a boundary between layers, which has a differing
conductivity from the surrounding material.

In each case, the propagating wave impinges on the reflector at some angle, and is
reflected from at an angle determined by the law of reflection for the medium. For
scalar waves, which is to say waves that do not experience mode conversion, the angle
of incidence equals the angle of reflection. For elastic waves, the angle of reflection is
a function of the angle of incidence and of the velocities and densities of the media on
either side of the reflector.

The scattered wave therefore carries information about both the orientation of the
reflector and its location. Thus, an image formed from such data is a solution to an
inverse problem wherein the wavespeed of the medium and the location and orientation

67

68

B

Y

Figure 5.1: Cartoon showing the simple shifting of time to depth. The spatial coordinates
x do not change in the transformation, only the time scale t is stretched to the depth
scale z. Note that vertical relief looks greater in a depth section as compared with a time
section.

of the reflector are the unknown variables for which we are attempting to solve.

5.2 Inverse scattering imaging as time-to-depth
conversion

In geophysics there are three common types of inverse-scattering imaging techniques
that may be encountered. These are “acoustic,” “ground penetrating radar (GPR),” and
“reflection seismic.” Acoustic methods include sonar as well as any other echo imaging
method that employs sound waves in the air or water.

In each case a species of wave is introduced into the subsurface. This wave is reflected
off of structures within the Earth and travels back up to the surface of the Earth where it
is recorded. In the raw form, the coordinates of the data consist of the spatial coordinates
of the recording position and traveltime, which may be represented as the ordered triple
of numbers Data(xy,xs,1).

5.2.1 Migration as a mapping of data from time to space

It is implied that some form of processing is needed to convert data collected in the input
coordinates of space and time Data(x1, z9,t) into an image in the output coordinates that
are purely spatial DepthImage(yi,y2,ys) or are new spatial coordinates and a “migrated

68

69

time coordinate” TimelImage(y,ys, 7). When the output is in space and migrated time,
we call the process “time migration” and the output a “time section”. When the output
is in purely spatial coordinates, we call the process “depth migration” and the output a
“depth section”. Each type of section is found useful in exploration seismic. We consider
“time migration” as the focusing of the data into an image, and “depth migration” as
focusing combined with depth conversion, in the simplest description.

5.2.2 Migration as focusing followed by depth conversion

Thus, for our “migration as depth conversion” we will consider the final step of processing
as a process that converts the data from Data(y,, y2, 7) to data in DepthImage(y1, yz, ys)
in purely spatial coordinates.

The simplest cases of such processing occur when the output spatial coordinates on
the recording surface are such that y; = z; and y» = x5. Then the remaining problem
is to “trade time for depth”. Often the symbol z is used to represent depth, with z
increasing positively as we go deeper into the earth.

Clearly, special circumstances are needed for this simple case to exist. Effectively,
such an imaging problem is one dimensional. This type of problem may result from the
construction of synthetic well logs from migrated seismic data or making depth sections
from migrated time sections.

Sonar and GPR data usually have the attribute that the same piece of equipment
is used as both source and receiver. Furthermore, this source-receiver array is likely
highly directional, forming a beam of energy that travels straight down into the Earth,
with reflections being recorded by a detector that can only see near vertical arrivals.
For sonar, this works because the scattering occurs from roughness in the structures
(“rough surface scattering”) of the subsurface. Thus we may consider the reflection to
have occurred directly below the receiver, with little energy coming in from angles far
from vertical.

To perform time-depth conversion, we need to know something about the velocities
of the subsurface.

5.3 Time-to-depth with suttoz ; depth-to-time with
suztot

The simplest approach to depth conversion is to use a simple velocity profile expressed
as a function of time v(t). How can we have velocity as a function of time? The idea is
intuitive. We expect the image to show reflectors. These reflectors are the boundaries
between media of different wavespeeds. Given auxiliary information about geology, well
logs or the result of seismic velocity analysis, we expect to be able to relate arrivals on
the seismic section to specific depth horizons, for which, in turn, we have wavespeed
information.

69

70

a) trace number b) trace number
10 20 30 10 2 30
o o +
0.05+
100+ } >
0.10+
@ b E
o s
£ ' 5 200
0.15+
0.204 300/
0.25+
test pattern depth section
C) trace number
10 20 30

0

0.05+

0.104

time s

0.15+

time section reconstructed

Figure 5.2: a) Test pattern. b) Test pattern corrected from time to depth. c¢) Test
pattern corrected back from depth to time section. Note that the curvature seen depth
section indicates a non piecewise-constant v(t). Note that the reconstructed time section
has waveforms that are distorted by repeated sinc interpolation. The sinc interpolation
applied in the depth-to-time calculation has not had an anti-alias filter applied.

70

71

b locity m/
a) 1500 2000 3000 m/S) 2000 3000 Vigggymssqoo 6000
H 500
velocity
1125
€
m ém 1000
162.5 1500
Well Log

C) 100 2000 300 M/S

velocity
131.25

193.75

m

Figure 5.3: a) Cartoon showing an idealized well log. b) Plot of a real well log. A real
well log is not well represented by piecewise constant layers. ¢) The third plot is a linearly
interpolated velocity profile following the example in the text. This approximation is a

better first-order approximation of a real well log.

71

72

5.4 Time to depth conversion of a test pattern

To see what the problem of time-to-depth and depth-to-time is all about, we may try
suttoz on a test pattern made with suplane

$ suplane > junk.su

$ suttoz < junk.su t=0.0,.15,.2 v=1500,2000,3000 > junkl.su
$ suxwigb < junk.su title="test pattern" &

$ suxwigb < junkl.su title="depth section" &

The program suztot has been provided to apply depth-to-time conversion, as the
inverse of sutotz. Because we know the values of the velocity that were used, we must
try to figure out the depths Z1, Z2, and Z3, necessary to undo the operation

$ suztot < junkl.su 2z=Z1,Z2,Z3 v=1500,2000,3000 > junk2.su
$ suxwigb < junk2.su title="time section reconstructed" &

Please note, you don’t literally type “z=71,72,73” what you want is to find three numbers
representing depths to substitute in for Z1, Z2, and Z3. The first value Z1 = 0.

You will notice that on the junkl.su data, the picture does not start getting distorted
until after about depth 105. This gives a clue as to the place where the faster speeds
kick in.

You will further notice that the junk2.su data does not look very much like the
junk.su data. The first thing that you should notice is that the original junk.su data
only goes to about .24 seconds, but the junk2.su data goes to more than .5 seconds.

It is a good idea to use surange to see if the header values have been changed by the
processing. The original data shows

$ surange < junk.su
32 traces:

tracl 132 (1 - 32)
tracr 132 (1 - 32)

offset 400
ns 64
dt 4000

whereas the depth converted data has a greater number of samples

$ surange < junkl.su
32 traces:

tracl 132 (1 - 32)
tracr 132 (1 - 32)

trid 30

offset 400

ns 126 G ns has increased!!!
dt 4000

di 3.000000

72

73

and finally, the depth-to-time converted data

$ surange < junk2.su
32 traces:

tracl 132 (1 - 32)
tracr 132 (1 - 32)

offset 400
ns 63 ———————- ns is now 63
dt 4000

shows ns=63, rather than the original ns=64 samples.

5.4.1 How time-depth and depth-time conversion works

The way that this works is simple. Each sample of the data is a function of time. We
have velocities to use for each time value. If the velocity is constant, then the process
of time to depth conversion is more of a relabeling process than a calculation. However,
for situations where the velocity varies as we go to later times in the data, we have to
deal with the fact that the sample spacing of the time-to-depth shifted data changes as
the velocity changes. Indeed, constant or piecewise-constant profiles rarely accurately
represent wavespeed variation in the real earth, so there can be considerable change in
the vertical location of the samples.

The depth is calculated for each sample, but because we want the output to be
uniformly sampled, we have to interpolate the missing depth values. This interpolation
may be done many ways, but in this program it is done by fitting a sinc function (sinc
interpolation) to the data points. (Look up sinc interpolation in a textbook on signal
processing.) The bandwith of this sinc function is the the band from 0 to the Nyquist
frequency of the data. When resampling to a greater number of samples, the Nyquist
frequency of the output is greater than the Nyquist frequency of the input, so there is no
possibility of aliasing. However, if we subsample data, the potential for aliasing exists.

To repeat the test, we should be setting nt=64 to force the number of samples to be
the same on both input and output

suplane > junk.su

suttoz < junk.su t=0.0,.15,.2 v=1500,2000,3000 > junkl.su
suztot < junkl.su nt=64 z=7Z1,72,Z3 v=1500,2000,3000 > junk2.su
suxwigb < junk.su title="test pattern" &

suxwigb < junkl.su title="depth section" &

suxwigb < junk2.su title="reconstructed time section" &

hH P P fH P P

The time-to-depth may be improved by truncating the additional values
$ suwind itmax=64 < junkl.su | suxwigb title="time to depth" &

where suwind has been used to pass only the first 64 samples of each trace.

73

74

The short answer is that while the time-to-depth and depth-to-time conversions are
ostensibly simply piecewise linear operations in this simple example, there is the potential
for errors that can be introduced by the interpolation process. These errors may make
process of stretching only partially invertible.

5.4.2 How to calculate the depths Z1, Z2, and Z3

The main problem is deciding how the v(¢) and v(z) functions are to be interpolated. As
is seen in Fig 5.3 constant step models often seen in cartoon well log diagrams do not
accurately depict the complexity of actual well logs.

The simplest approximation to a real well log is a piecewise continuous curve, with
piecewise linear being the simplest example of such a curve. That is, we assume a
functional form of v(t) = mt + b for velocity as a function of time. Here, m is the slope
of the linear trend given by the ratio of the change in velocity divided by the change in
time, and b would be the beginning velocity of the trend.

For the example of ¢t = 0.0, .15, .2 v = 1500, 2000, 3000 in the region from t = 0.0
to t = .15 the velocity profile would be given by v;(t) = (500/.15)¢t + 1500. Here the
velocity starts at 1500m/s at the surface, and increases to 2000m/s at time .15s. In
the second region, which begins at t = .15s to t = .2s, the velocity profile is given by
vo(t) = (1000/.05)(t — .15) 4+ 2000. Here the velocity changes by 1000m/s in at time
increases from .15s to .2s.

Calculating the values of the depths Z1, Z2, Z3, we see trivially that Z1 = 0 and that
by integrating the two equations above yields Z2 = 131.25 and Z3 = 193.75, respectively.

To explain why this is so, suppose there was only one layer with constant velocity
Vg, that "turned on” at time t = 0. Then we could find the depth z corresponding to
each time ¢ by noting that z = (1/2)vet (distance = rate times time). The extra factor
of (1/2) appears because t is a two-way traveltime. If we had a v(t) medium, where the
value of velocity was a function of time, then we could consider this as being a collection
of discrete layers, and the depth would be the sum of the thicknesses of the discrete layers

n

z = (1/2) Z Uk(tk+1 — tk>, (541)

k=0
where vy is the velocity in the k-th layer.

If the respective vy, were smoothly varying velocity functions vg(t) and 0ty = (txs1—1tx)
would become dt and thickness of the k-th layer would become

a=0/2) [(bt (5.4.2)

ty

5.5 Sonar and Radar, bad header values and
incomplete information

Most likely, depth conversion for sonar and radar requires simply knowing the speed of
sound in water in the former case, and the speed of light, in the latter. This sounds

74

75

simple, and if we had all of the information in a neat and consistent form, it would be.

The first complication comes from the fact that SU is a seismic package. When
non-seismic data are used in a seismic package, often the time sampling interval must
be scaled to store the data. The reason for this is that the creators of the SEG-Y data
format chose the time sampling interval dt not to be a floating point number, but rather
as an unsigned short integer. They did this to save space in the header, requiring only
2 bytes for a short integer. On a 32 bit machine, the size of the largest value that an
unsigned short can take on is 32767. Thus, scaling is necessary.

Usually, these scale factors are multiples of some power of 10. Try doing depth
conversion on the sonar and radar data, using values you know for the speed of sound

$ suttoz v=SPEED_OF_SOUND_IN_WATER < sonar.su | suximage perc=99 &
and the speed of light
$ suttoz v=SPEED_OF_LIGHT < radar.su | suximage perc=99 &

respectively.

The speed of light is 2.998 x 108m/s. The speed of sound in water is 1500m/s. Likely,
the correct values to use in each case will be off by some multiplier that is a power of
10, owing to the fact that the natural frequencies available for radar and sonar are not
in the same band as those used for seismic data.

If we type

$ sukeyword dt

unsigned short dt; /* sample interval; in micro-seconds */

we see that the time sampling interval, dt, is expressed in microseconds. Seismic fre-
quencies range from a few Hz, to maybe 200 hz, but likely are not up into the kilohertz
range, unless some special survey is being conducted. Sonar frequencies likely range ten’s
of kilohertz to hundreds of kilohertz. Radar operates in the megahertz range. So, it is
common for the user to fake the units on the time sampling interval so as to fit the
requirements of a seismic code.

5.6 The sonar data

The “sonar.su” file is one of the profiles collected by Dr. Henrique Tono of Duke Univer-
sity in a special laboratory setting.

According to a personal communication by Dr. Tono, the “geologic setting” of the
sonar data is thus

“The deposits and images were produced at the Saint Anthony Falls Lab of
the University of Minnesota. Here, experimental stratigraphy is produced

5

76

under precisely controlled conditions of subsidence, base level, and sediment
supply. By superimposing optical images of the sectioned deposits on seismic
images, we can directly observe the ability of seismic profiling to distinguish
different geological features.

The experimental basin is 5 m by 5 m (25 m2) and 0.61 m deep. Sediment
and water were mixed in a funnel and fed into the basin at one corner. This
produced an approximately radially-symmetrical fluvial system, which aver-
aged 2.50 m from source to shoreline. The edges of the basin were artificially
roughened in order to direct the channels away from the walls. The ”"ocean
level” was maintained through a variable-discharge siphon located in the op-
posite corner of the basin. Though we imposed a gradual base-level rise, in
order to simulate subsidence, the shoreline maintained a constant position
through the experiment.”

Dr. Tono goes on to describe the experimental layout:

”The outgoing pulse is generated with a Prototype JRS DPR300 (Pulser/Receiver),
which drives a 900-volt square pulse into the transducer. It is set to a
pulse/receive frequency of 100 Hz, with an input gain of 30 dB in echo mode.

The high pass filter is set at 20 KHz, and the low pass filter at 10 MHz. A
Gage-Applied Compuscope 1602 digitizer computer card (16 Bit, 2 Channel
card with acquisition memory of 1 Million samples) is used to perform the

A /D conversion, and the data is displayed on a computer screen by means

of GageScope 3.50. It is digitally recorded on the computer hard disk. A
sample rate of 2.5 MS/s is chosen (Nyquist frequency=1.25 MHz). It is then
re-formatted to SEG-Y and processed with Seismic Unix.

The data were acquired with a 5mm shotpoint and station interval (zero
offset), and lem separation between lines.”

In the directory /data/cwpscratch/Datal you will find a number of JPEG format files
depicting the experimental setting described by Dr. Tono.

The file "dsc01324.su” is an SU format file version of the image DSC01324.JPG,
cropped to remove parts of the image that are not the cross section. This is not exactly
the cross section of the data sonar.su, but it gives the idea. Rarely, are we able to slice
into the actual model in this fashion.

76

7

5.7 Homework Problem - #2 - Time-to-depth
conversion of the sonar.su and the radar.su
data. Due Thursday 10 September 2015 and
Tuesday 15 September 2015, for the respective
sections

Find the necessary velocities to permit the correct time-to-depth conversion of the sonar.su
and radar.su data. You will need to figure out the appropriate units, because it is not
possible for these non-seismic datasets to have an accurate representation of the time
sampling interval represented in the trace header field dt. Make sure that you give a
justification explaining why your choice of the appropriate power of 10 scaling factor is
likely the correct one. Remember that the depth scale on you output data should make
sense.

5.8 Concluding Remarks

When receiving software, either that is given to us, or that which we purchase, it is
important to try to figure out what assumptions are built into the package. One way to
do this is to apply the software to test data.

As applied scientists and engineers, we are often in in situations where we are forced
to use a tool that is not quite right for the job. It is not uncommon for laboratory exper-
imentalists or ground penetrating radar practitioners to use seismic processing software
to do part of the analysis of their (non-seismic) data. We must be careful to keep the
problem simple and expect only what we deserve from the data.

When receiving data, it is important to know everything that you can possibly know
about the data, such as the spacing of the traces, the time sampling interval, any pro-
cessing that has been applied, and any redifinition of header values.

5.8.1 The sonar - seismic analogy

When explaining seismic imaging to non-geophysicists, it is tempting to say that seis-
mic imaging is “sort of like sonar”. However, sonar is a rough-surface-scattering based
imaging method, whereas seismic imaging is a “specular” or mirror-reflection-scattering
imaging. In rough-surface scattering, the image may, indeed, be formed by ”straight
down and straight back” reflections. In seismic, this is rarely the case. We must take
offset between the source and receiver into account. In seismic methods, there are also
rough-surface contributions. These are the diffractions that we look for on stacked data.

In the early days of seismic prospecting (c. 1930s) there were practitioners of the
seismic method who thought that seismic was the same as sonar and thus expected that
seismic datasets should be “data images.” Such phenomena as “bowties” provide a clue
that reflection seismic is not the same as sonar.

7

Chapter 6

Zero-offset (aka poststack) migration

The first reflection seismic experiment as applied to petroleum exploration was conducted
by physicist John Clarence Karcher in Oklahoma in 1921 (Schriever) in conjunction with
Marland Oils, which would later become CONOCO. Oklahoma was the center of the US
oil industry at that time.

While it is clear from reading documents from that era that the expectations of some
practicioners of reflection seismic methods were that the results should be similar to
sonar, it is clear from a figure in Karcher’s report from 1921, that he and others were
aware of the geometry of reflection, including a notion of migration, see Figure 6.1.

By the 1930s most geophysicists were well aware of the geometrical issues at the
heart of proper seismic interpretation. With the formation of the Society of Exploration
Geophysicists in 1930, followed by the first issue of the Society’s journal Geophysics the
proper usage of seismic data for geologic interpretation became known to the geophysical
community.

In Figure 6.2 we see the classical “bowtie” feature seen over a syncline. To the
early interpreter of seismic data, this diagram would not have constituted an image of
the subsurface, but rather a source of geometrical data (such as dip) pertaining the
subsurface reflector.

Another notion that became apparent is that parts of the data on the seismic traces
is displaced from its “correct” position by the properties of wave propagation. Assuming
that all reflections are normal incidence for this zero-offset geometry, it is clear that
parts of the bowtie originate from higher positions on the sides of the syncline. Thus,
the notion of “migrating” those arrivals to their correct location became an important
idea for interpretation. Because the seismic data were analog rather than digital, such
corrections would naturally be applied graphically.

While graphical migration techniques had been applied since the 1930s, the first
notable technical paper describing this technique was published by J. G. (Mendel) Hage-
doorn in 1954. This paper is important because Hagedoorn’s description of the migration
process inspired early digital computer implementations of migration.

78

79

Surface

ﬁqﬁ:’zoulﬁ&

Section on Vine Creek
I inch « 1005
fecceds Obtaiwed July £2

Auy, 3. 1921
Depth of the Viola limestone al Vines Branch was measured with reflection seismograph on
August g, Tg21—world’s first reflection seismograph geologic section.

Figure 6.1: Geometry of Karcher’s prospect, note semicircular arcs indicating that
Karcher understood the relation of surfaces of constant traveltime to what is seen on
a seismogram.

6.1 Migration as reverse time propagation.

One way of looking at migration is as a reverse time propagation. The idea may be
visualized by running the output from a forward modeling demo in reverse time. Do the
following, noting that you need to replace “yourusername” with your actual username
on the system, so that the items are copied to your personal scratch area

$ cp /data/cwpscratch/Datal/syncline.unif2 /gpfc/yourusername/Templ
$ cp /data/cwpscratch/Datal/XSyncline /gpfc/yourusername/Templ

$ more XSyncline

$ more syncline.unif2

Now

$ cd /gpfc/yourusername/Templ

If you type:

$ more syncline.unif?2
0 0

4000 0
1 -99999
0 1000.

79

Trace

a) 20 40 60 80

. “#"‘“ﬁw
iigi !qH"

Time in Seconds
"
= 3

Synthetic Seismogram

Range (m)
b) 0o 1000 2000 3000 4000
E v = 2000 m/s P = const.
o)
v = 3000 m/s P = const.
2000

Simple Single-Reflector Model

Figure 6.2: a) Synthetic Zero offset data. b) Simple earth model.

80

80

81

500. 1100.

1000. 1300.
2000. 1000.
2700. 1100.
3200. 1000.
4000. 1050.
1. -99999

you will see the input data for a wavespeed profile building program called unif2. The
contents of this file define two boundaries in a velocity model. The data for the two
boundaries is separated by the values

1. -99999

The values in the column on the left are horizontal positions and the values on the right
are depths. This model defines the same simple syncline model seen in Fig 6.2. We now
look at the contents of the shell script XSyncline

$ more XSyncline

#! /bin/sh
Shell script to build velocity profiles with unif2

input parameters
modelfile=syncline.unif2
velfile=syncline.bin
n1=200

n2=400

d1=10

d2=10

use unif2 to build the velocity profile
unif2 <$modelfile method=$i ninf=2 nx=$n2 nz=$nl1 v00=1000,2000 \
ninf=1 method=spline > $velfile

view the velocity profile on the screen

ximage < $velfile wbox=400 hbox=200 ni1=$nl1 n2=$n2 di=$d1 d2=$d2 \
wbox=800 hbox=400 legend=1 title="Syncline model" labell="depth m" \
label2="distance m " units="m/s" &

provide input for sufdmod?2

xs=1000 zs=10 hsz=10 vsx=1000 verbose=2
vsfile="vseis.su" ssfile="sseis.su" hsfile="hseis.su"
tmax=3.0 mt=10

labell="Depth m"

81

82

label2="Distance m"

perform finite difference acoustic modeling to generate data
for a single shot in the
sufdmod2 < $velfile nz=%$nl dz=$d1 nx=$n2 dx=$d2 verbose=1 \
xs=%xs zs=%$zs hsz=$hsz vsx=$vsx hsfile=$hsfile \
vsfile=$vsfile ssfile=$ssfile verbose=$verbose \
tmax=$tmax abs=1,1,1,1 mt=$mt |
suxmovie clip=1.0 \
title="Acoustic Finite-Differencing" \
windowtitle="Movie" \
labell=$labell label2=$label2 \
n1=$nl1 d1=$d1 f1=3$f1 n2=%$n2 d2=$d2 f2=$f2 \
loop=1 sleep=.8 &

exit O
You may run the demo by typing:
$ XSyncline

The result shows the wavespeed profile for the model. This is similar to the “simple”
model that will be discussed later in the these notes. A movie showing snapshots of
the wavefield will begin. Watch the wavefront of the energy from the shot expand. You
may stop and restart the movie by pressing the far right mouse button. Of interest are
the frames at which the first reflections begin. As the movie progresses, you will see
the reflected field progress as the reflection point propagates along the reflector surface.
Indeed, from viewing this movie, we can see why an integral over the reflector surface,
called the “Kirchhoff modeling formula” is a way of modeling the reflected field.

Note that you only see wavefronts, there is nothing like a “ray” to be seen. A ray is
the trajectory taken by a point on a wavefront. Second, notice that the “bowtie” forms
as the caustic in the propagating wavefield travels to the surface.

The movie will run in a loop. You may stop the movie by pushing the right mouse
button. You may reverse the movie by pressing the middle mouse button. Effectively,
running the field backward in time is “reverse-time migration.” In seismic data, we do
not have a record of the down-traveling field. All we have is the record of that part
of the reflected field that hits the surface of the earth where there are geophones. The
migration process finds the place where the downward travelling field and the reflected
field overlay—the reflector surface. One way of looking at migration is that we would
like to cross-correlate the down-traveling field with the time-reversed reflected field. The
place where these fields correlate is at the reflector surface.

You may also see what the seismic data looks like recorded at the surface of the earth
model by viewing the file hseis.su via

$ suximage < hseis.su perc=99

82

83

Figure 6.3: The Hagedoorn method applied to the arrivals on a single seismic trace.

to see the direct arrival and the bowtie-shaped reflected arrival.

Finally you may change the depths in the model by editing the file syncline.unif2,
or change the location of the source to see what varying these quantities changes in the
data. You may slow down the movie by increasing the value of the sleep= parameter.

6.2 Lab Activity #5 - Hagedoorn’s graphical
migration

The purpose of this lab example is to migrate the simple data in Figure 6.2a) by Ha-
gadoorn’s graphical method. These synthetic data represent the zero-offset reflection
seismograms recorded over the undulating reflector model in Figure 6.2b). The wave-
speed in the upper medium is assumed to be 2000 m/s, and the data are drawn in such
a way that 1.0 s two way time is equivalent to 1000 m of distance. Thus, the time scale
translates into a depth scale that is compatible with the horizontal scale.

If we draw a circle centered at time ¢t = 0 of a given seismic trace and passing through
a given seismic arrival, we have sketched all possible reflection points from which the
seismic arrival could have originated. These circles are the same as the incident field seen
in the seismic movie. If we recall, seismic migration finds the place where the incident
field interacts with the reflected field—the reflector surface.

When similar circles are drawn for every arrival on every trace, the result is a collection
of circles whose envelope delineates the reflector. See Fig 6.4 for an idea of what this
should look like.

83

84

Trace
20 40 60 80

0
[2]
o
[
(@]
()
D
_UE) =25 ! .."__,..- 1 "“"‘ﬁ.n'ﬂ"’""“
£ T T
|_

2

Synthetic Seismogram

Figure 6.4: Hagedoorn’s method applied to the simple data of Fig 6.2. Here circles, each
centered at time t = 0 on a specific trace, pass through the maximum amplitudes on
each arrival on each trace. The circle represents the locus of possible reflection points in
(x, z) where the signal in time could have originated.

Trace
20 40 60 80

0
[72]
©
[
(@)
Q)
3 £
==
— Tl EevEs. it L
GEJ PEL e a0
|_

2

Synthetic Seismogram

Figure 6.5: The dashed line is the interpreted reflector taken to be the envelope of the
circles.

84

85

tf

Figure 6.6: The light cone representation of the constant-velocity solution of the 2D wave
equation. Every wavefront for both positive and negative time t is found by passing a
plane parallel to the (z, z)-plane through the cone at the desired time t. We may want
to run time backwards for migration.

Mathematically this method of migration may be thought of as the reconstruction of
the reflector by defining the tangent vectors of the reflector. What then, are the circles we
have drawn? The answer can by found by looking at Figure 6.6. For our 2D constant-
wavespeed example, all solutions of the wave equation, which is to say all wavefronts,
can be found by passing a horizontal plane through the cone in Figure 6.6. Both physical
(causal) solutions (the positive ¢ cone) and the nonphysical (anti-causal) solutions (the
negative ¢ cone) are depicted. We use the causal cone for modeling, and the anti-causal
or reverse-time cone for migration.

To see what a given circle means in Hagadoorn’s method, we may look at the reverse
time cone in Figure 6.7. We may think of the curve on the ¢ = 0-plane as the locus of
all possible positions from which the reflection originated, or we may think of this as the
wavefront of the backward-propagated wave.

If we were to apply the Hagedoorn method on the computer, we might consider
creating for each seismic trace a panel of seismic traces replicating our original seismic
arrivals, but on a semicircular pattern. “Spraying” out our seismic data for each trace
along the respective Hagedoorn circle would yield one new panel of traces for each seismic
trace. Our 80 traces would then become 80 panels of sprayed traces. We would then
sum the corresponding traces on each panel. Constructive interference would tend to
enhance the region near the reflector, and destructive interference would tend to eliminate
everything else, revealing only the reflector. Does this method work? Yes, but it is subject
to interference errors, if the data are not densely sampled in space.

Because a point at (£,7) represents an impulse in the (x,t) space, corresponding

85

86

€& |y

Figure 6.7: The light cone representation for negative times is now embedded in the
(x, z,t)-cube. A seismic arrival to be migrated at the coordinates (£, 7) is placed at the
apex of the cone. The circle that we draw on the seismogram for that point is the set of
points obtained by the intersection of the cone with the ¢t = 0-plane.

circle drawn in Hagadoorn’s method may be thought of as the impulse response of the
migration operation.

6.3 Migration as a Diffraction stack

Another approach to migration is immediately apparent. If we apply Hagedoorn’s method
to the diffraction from a point scatterer, then we observe that the scatterer is recon-
structed. However, tangent vectors are not defined with regard to a point scatter. In-
stead, it must be the ray vector from the source/receiver position to the scatterer that is
being reconstructed. In other words, the reflected ray vector is the distinguished vector
associated with the imaging point. For a reflector surface, this is the perpendicularly-
reflected ray vector. See Figure 6.8.

Furthermore, we might ask: why is it necessary to draw Hagedoorn’s circles at all?
Suppose that we were to sum over all possible diffraction hyperbolae. Then the largest
arrivals would exist only where a hyperbola we sum on hits a hyperbola in the data. The
sum would then be placed at a point at the apex of the hyperbola passing through our
data. This type of migration is referred to as a diffraction stack. We sum or “stack”
data, but we do this over a diffraction curve. Furthermore the output need not be a
depth section, but could be a time section.

A useful diagram for understanding the diffraction stack is the light cone diagram in
Figure 6.9. A light cone is the representation of the surface where solutions of the wave

86

87

Distancgq (km)

Time (sec)
n

Diffraction

Figure 6.8: Hagedoorn’s method of graphical migration applied to the diffraction from
a point scatterer. Only a few of the Hagedoorn circles are drawn, here, but the reader
should be aware that any Hagedoorn circle through a diffraction event will intersect the
apex of the diffraction hyperbola.

87

88

Figure 6.9: The light cone for a point scatterer at (z, z). By classical geometry, a vertical
slice through the cone in (x,t) (the z = 0 plane where we record our data) is a hyperbola.
Time migrations collapse diffraction hyperbolae to their respective apex points. Depth
migrations map these apex points into the (z, z) (2D) plane.

equation live. The scatterer is located at the point (z,z). Time increases downward. A
horizontal slice through the cone reveals the circular wavefronts that are the circles drawn
in Hagedoorn’s method. A vertical slice through the cone in (z,t) reveals the hyperbola
that is the characteristic shape of a diffraction in a constant wavespeed medium.

6.4 Migration as a mathematical mapping

Another diagram that reveals migration as a type of data transformation or mapping
may be seen in Figure 6.10. Here, we see that the impulse response of the migration
operator is a circular curve in constant wavespeed media.

The diffraction in (z,¢) may be thought of as the “impulse response” of the modeling
operation that made the data from a point at (z,z). Migration by diffraction stack,
therefore, consists of selecting a point (z, z), modeling the diffraction curve in (z,t), and
then summing through the data over this curve. Note that this must be done for every
output point to make the image.

Figure 6.10 represents more than migration. Going from a) to b) is Hagedoorn’s
migration method. Going from c) to d is the diffraction stack migration method. If
however, we reverse directions, mapping from from b) to a) or from d) to ¢ then we are
modeling or doing data-based de-migration, which is the inverse of migration. The idea
then is that modeling is the forward process and migration is the inverse operation.

88

89

—+

1) z

X — d) X —

t z (sz)

Figure 6.10: Cartoon showing the relationship between types of migration. a) shows a
point in (£, 7)j, b) the impulse response of the migration operation in (z, z), ¢) shows a
diffraction, d) the diffraction stack as the output point (z, z).

6.5 Concluding Remarks

The notion of the value and motivation of using seismic data has changed through the
history of seismic methods. Originally, seismic data were used to find an estimate of
perhaps only a single reflector. As the technique developed, the depth to and dip of
a specific target reflector was found. Most notably was Frank Rieber’s “dip finder.”
The “dip finder” was a recording system that was effectively an analog computer that
delivered an estimate of depth and dip for stronger reflectors. These data were then
used for drawing geologic cross-sections. In fact, Frank Rieber’s dip finder was doing
something similar to a variety of migration called “map migration.”

As the petroleum and natural gas industry evolved, so did the importance of the
seismic method. The technique started out as an aid in interpretation, becoming later
an “imaging technology.” Today, seismic migration is viewed by many as the “solution
to an inverse problem” wherein recorded seismic data are used as input to solve for
the reflectivity of the reflectors, as well as other important material parameters that
characterize lithology.

References

Schriever, W. (1952). “REFLECTION SEISMOGRAPH PROSPECTINGHOW IT STARTED.”
‘GEOPHYSICS”, 17(4), 936-942

Bleistein, N., J. K. Cohen, and J. W. Stockwell, Jr. (2001) “Mathematics of multidimen-

sional seismic imaging, migration, and inversion” Springer Verlag, New York.

89

Chapter 7

Lab Activity #6 - Several types of
migration

In this assignment we will apply several types of migration to the simple.su data. These
types of migration represent many of those that are commonly used in industry.

7.1 Different types of “velocity”

All seismic migrations require a background wavespeed (velocity) profile. However, we
must be very careful when addressing the term “velocity.” The actual wavespeeds in the
subsurface are called interval velocities, and most likely are going to be a function of
position.

However, the types of velocities that we often encounter, such as those obtained
from velocity analysis are stacking velocity, also known as the NMO velocity, which
is approximately the RMS (root mean squared) velocity. Such velocities are often
expressed as velocity as a function of time.

Having a velocity that is a function of time may seem strange, at first, but imagine
that you have a seismic section, with several strong seismic horizons. These strong arrivals
must represent relatively large impedence contrasts. If we had a set of well logs to go
with the seismic data, then we could identify those rock units with the strong impedence
contrasts. We could build a collection of velocities chosen from the well log, and assign
the times from the arrival time on the seismic section and thus we would define a v(t).
If we have v(t) for specific locations in the rock volume we are investigating we could
assemble a v(t,x) or a v(t, z,y) through some sort of interpolation.

7.1.1 Velocity conversion v;,,5(t) to v;,:(t)

The conversion between these two is given by the Dix equation

2 2 1/2
(tQUrmSQ _ tlvrmsl)

(t2 —t1)

Uint =

90

91

where v;,; is the interval velocity, t; is the traveltime to the first reflector, ¢y is the
traveltime to the second reflector, v,,,s1 is the root-mean-squared velocity of the first
reflector, and v,.,,s is the root-mean-squared velocity of the second reflector. The RMS
(root mean squared) part comes fromt the fact that we are effectively averaging and
taking the square root of squares going from RMS to interval velocity.

Often the output of a migration is horizontal position versus “migrated time.” This
implies that the input velocity is expressed as v(t), rather than v(z,z). We may have
interval or rms velocities as a function of time, e.g. v, () Or V(). This may seem
strange at first, but if we have v(t) profile, then v(z) is obtained by stretching time to
depth.

In SU a program called velconv performs many simple conversions between interval
and rms velocities. Type velconv with no options to see the selfdoc of the program

$ velconv

VELCONV - VELocity CONVersion

velconv <infile >outfile intype= outtype= [optional parameters]
Required Parameters:

intype= input data type (see valid types below)

outtype= output data type (see valid types below)

Valid types for input and output data are:

vintt interval velocity as a function of time
vrmst RMS velocity as a function of time
vintz velocity as a function of depth

zt depth as a function of time

tz time as a function of depth

Optional Parameters:

nt=all number of time samples

dt=1.0 time sampling interval

£t=0.0 first time

nz=all number of depth samples

dz=1.0 depth sampling interval

£z=0.0 first depth
nx=all number of traces

Example: '"intype=vintz outtype=vrmst" converts an interval velocity

function of depth to an RMS velocity function of time.

Notes: nt, dt, and ft are used only for input and output functions

91

92

of time; you need specify these only for vintt, vrmst, orzt.
Likewise, nz, dz, and fz are used only for input and output
functions of depth.

The input and output data formats are C-style binary floats.

7.2 Stolt or (f, k)-migration

To migrate the simple data in the computer we first begin with Stolt migration. Stolt’s
method, published in 1978, is a migration by Fourier transform and is often called (f, k)
migration. If we consider migration to be a “shifting of data,” which is expressed as a
signal processing technique, then we may consider that shifting to be done as a filtering
process. The data are shifted both temporally and spatially, suggesting that the filter
doing the shifting must be a filter that operates in both the frequency and wavenumber
domain. If the velocity function is variable (with time) the Stolt method accounts for
this by applying a stretch to the data prior to the filtering operation.

To get the shifting correct, Robert Stolt based his “shifting filter” on an integral
equation representation of the wave equation, and made use of the fast Fourier transform
algorithm for speed. To handle variable wavespeed Stolt introduced a “stretch,” much
as we scaled the time section to appear interchangeable with depth.

7.2.1 Stolt migration of the Simple model data

Here we apply Stolt migration to the simple.su data. Copy the dataset into your local
working directory via:

$ cd /gpfc/yourusername

$ mkdir Temp2

$ pwd (you should be in /gpfc/yourusername)
$ cp /data/cwpscratch/Data2/simple.su Temp2

changing your working directory to Temp2 via:

$ cd Temp2

You may view the data via:

$ suxwigb < simple.su xcur=3 title="Simple"

The Stolt migration is performed via the program sustolt. To see the self documentation
for sustolt type:

$ sustolt

92

93

SUSTOLT - Stolt migration for stacked data or common-offset gathers
sustolt <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [...]

Required Parameters:

cdpmin minimum cdp (integer number) for which to apply DMO
cdpmax maximum cdp (integer number) for which to apply DMO
dxcdp distance between adjacent cdp bins (m)

Optional Parameters:

noffmix=1 number of offsets to mix (for unstacked data only)
tmig=0.0 times corresponding to rms velocities in vmig (s)
vmig=1500.0 rms velocities corresponding to times in tmig (m/s)

Among the many parameters, those that are required are cdpmin, cdpmax, dxcdp, vmig
and tmig. Note: the type of velocities, vmig, that this program requires are RMS (or
stacking) velocities as a function of time! To see the range of the cdps in the data,

type

$ surange < simple.su

80 traces:

tracl 1 80 (1 - 80)
cdp 180 (1 - 80)
trid 1

ns 501

dt 4000

Thus, cdpmin=1 and cdpmax=80. The data were made with a 40m spacing, and with a
velocity in the first medium of 2000m/s. Applying sustolt

$ sustolt < simple.su cdpmin=1 cdpmax=80
dxcdp=40 vmig=2000 tmig=0.0 > stolt.simple.su

We may view the output of Stolt migration via
$ suxwigb < stolt.simple.su xcur=3 title="Stolt migration of simple data" &

The migrated data look similar in many ways to the graphical migration. These data
have been chosen to be too sparsely sampled spatially to be considered “good.” This
choice was made on purpose to accentuate the artifacts on the data. These artifacts
are known by the terms diffraction smiles, migration impulse responses, or endpoint
contributions. The fact that the data are sparse makes the migration operator see the
individual arrivals as single spikes, resulting in impulse responses on the output. There
is insufficient coverage.

93

a) trace number
0 10 20 30 40 50 60 70 80
0.5
©)
o 1.0+
£
1.5+
2.0
Spike data
b) trace number
0 10 20 30 40 50 60 70 80
0.5
)
o 1.0+
£
1
1.5
[
2.0

Stolt impulse responses

94

Figure 7.1: a) Spike data, b) the Stolt migration of these spikes. The curves in b) are
impulse responses of the migration operator, which is what the curves in the Hagadoorn
method were approximating. Not only do the curves represent every point in the medium
where the impulses could have come from, the amplitudes represent the strength of the
signal from that respective location.

94

95

Diffraction smiles as impulse responses

An effective way of thinking about many noise artifacts on migrated data is to note that
migration operators expect smooth input. If the input is not smooth, such as if there is
a noise spike or an abrupt termination of the data, this is similar to putting an impulse
into the algorithm. The result is an impulse response.

By applying suspike we may make data consisting only of 4 nonzero data values
(spikes). The data are otherwise the same number of samples (501) and the same number
of traces (80) as simple.su

#! /bin/sh

$ suspike nspk=4 nt=501 ntr=80 dt=.004 ix1=40 it1=63 ix2=40 \
it2=175 ix3=40 it3=40 it3=330 ix4=40 it4=420 \
| sushw key=cdp a=1 b=1 > spike_simple.su

and we apply sustolt with the same parameters as we used on the simple.su data

$ sustolt < spike_simple.su vmig=2000 tmig=0.0
dxcdp=40 cdpmin=1 cdpmax=80 > stolt.spike.su

shown in Figure 7.1

7.3 Gazdag or Phase-shift migration

In 1978 Jeno Gazdag published a type of migration that also makes use of the shift
theorem. In this class of method, the model is discretized in such a way that the vertical
direction z is considered to be preferred. The data are Fourier transformed, and the
migration is applied as a phaseshift, to each wavenumber. The data are then inverse
Fourier transformed.

The program sugazmig

$ sugazmig

SUGAZMIG - SU version of Jeno GAZDAG’s phase-shift migration
for zero-offset data, with attenuation Q.

sugazmig <infile >outfile vfile= [optional parameters]
Optional Parameters:

dt=from header(dt) or .004 time sampling interval
dx=from header(d2) or 1.0 midpoint sampling interval

95

96

£t=0.0 first time sample

ntau=nt (from data) number of migrated time samples

dtau=dt (from header) migrated time sampling interval

ftau=£ft first migrated time sample

tmig=0.0 times corresponding to interval velocities in vmig
vmig=1500.0 interval velocities corresponding to times in tmig

Try the Gazdag migration of the simple.su data via:
$ sugazmig < simple.su dx=40 vmig=2000 tmig=0.0 > gaz.simple.su

Note: the velocities, vimig, here are interval velocities as a function of time.

You will notice that you could do several Stolt migrations in the time that it takes to
do a single Gazdag.

By the application of a slightly different formulation of phase-shift migration, the
performance, as well as the accuracy at steeper dips of Gazdag migration can be improved.
The result is Dave Hale’s sumigps

$ sumigps
SUMIGPS - MIGration by Phase Shift with turning rays
sumigps <stdin >stdout [optional parms]

Required Parameters:
None

Optional Parameters:

dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 distance between successive cdps
££fi1=0,0,0.5/dt,0.5/dt trapezoidal window of frequencies to migrate
tmig=0.0 times corresponding to interval velocities in vmig
vmig=1500.0 interval velocities corresponding to times in tmig
viile= binary (non-ascii) file containing velocities v(t)

nxpad=0 number of cdps to pad with zeros before FFT
ltaper=0 length of linear taper for left and right edges
verbose=0 =1 for diagnostic print

Try an improved phase-shift migration:

$ sumigps < simple.su dx=40 vmig=2000 tmig=0.0 > ps.simple.su

96

97

7.4 Claerbout’s finite-difference migration

Another “backpropagation” approach was taken by Jon Claerbout in 1970 via finite-
difference solution of a one-way approximate wave equation. This is a reverse-time finite
difference migration, but it is not the exact wave equation. The “15 degree” part refers to
the angle of a cone about vertical, within which the traveltime behavior of the migration
is sufficiently similar to that of the standard wave equation as to yield an acceptable
result. Other approximations for increasingly larger angles have been created. An im-
plementation of a version of this finite-difference migration that gives the user a choice
of different “angles of accuracy” is sumigfd

SUMIGFD - 45-90 degree Finite difference migration for zero-offset data.
sumigfd <infile >outfile vfile= [optional parameters]

Required Parameters:
nz= number of depth sapmles
dz= depth sampling interval
vifile= name of file containing velocities
(see Notes below concerning format of this file)

Optional Parameters:
dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval
dip=45,65,79,80,87,89,90 Maximum angle of dip reflector
Try:

$ cp /data/cwpscratch/Data2/vel.fdmig.simple /gpfc/yourusername/Temp?2
$ cd /gpfc/yourusername/Temp2
$ sumigfd < simple.su dx=40 dz=12 nz=150 vfile=vel.fdmig.simple > fd.simple.su

Note: the velocity file (vfile) expects interval velocities as a function of (z,z2),
where z is taken as the fast dimension in this file.

7.5 Ristow and Ruhl’s Fourier finite-difference
migration
A hybridization between phase-shift migration and finite-difference migration known as

“Fourier finite difference” was published in 1994 by D. Ristow and T. Ruhl. This type
of migration is implemented in sumigffd

97

98

SUMIGFFD - Fourier finite difference migration for
zero-offset data. This method is a hybrid migration which
combines the advantages of phase shift and finite difference
migrations.

sumigffd <infile >outfile vfile= [optional parameters]

Required Parameters:

nz= number of depth sapmles
dz= depth sampling interval
viile= name of file containing velocities

Optional Parameters:
dt=from header(dt) or .004 time sampling interval

dx=from header(d2) or 1.0 midpoint sampling interval
£t=0.0 first time sample
£z=0.0 first depth sample

Try:

$ cp /data/cwpscratch/Data2/vel.fdmig.simple /gpfc/yourusername/Temp?2
$ cd /gpfc/yourusername/Temp2
$ sumigffd < simple.su dx=40 dz=12 nz=150

vfile=vel.fdmig.simple > ffd.simple.su

7.6 Stoffa’s split-step migration

Another algorithm, known as the “split-step” algorithm, developed by P. Stoffa, et al in
1990 is an extension of this idea with sumigsplit

SUMIGSPLIT - Split-step depth migration for zero-offset data.
sumigsplit <infile >outfile vfile= [optional parameters]

Required Parameters:

nz= number of depth sapmles
dz= depth sampling interval
viile= name of file containing velocities

Optional Parameters:
dt=from header(dt) or .004 time sampling interval

98

99

dx=from header(d2) or 1.0 midpoint sampling interval
£t=0.0 first time sample
fz= first depth sample

Try:

$ cp /data/cwpscratch/Data2/vel.fdmig.simple /gpfc/yourusername/Temp?2
$ cd /gpfc/yourusername/Temp2
$ sumigsplit < simple.su dx=40 dz=12 nz=150

viile=vel.fdmig.simple > split.simple.su

7.7 Gazdag’s Phase-shift Plus Interpolation
migration

A problem with the original Gazdag phaseshift migration is that it did not handle lateral
velocity variation well. An approach called “phase shift plus interpolation” (PSPI) was
developed Jeno Gazdag in 1984 that partially alleviates this problem. In SU this is
implemented as sumigpspi

SUMIGPSPI - Gazdag’s phase-shift plus interpolation migration
for zero-offset data, which can handle the lateral
velocity variation.

sumigpspi <infile >outfile vfile= [optional parameters]

Required Parameters:
nz= number of depth sapmles
dz= depth sampling interval
vfile= name of file containing velocities
(Please see Notes below concerning the format of vfile)

Optional Parameters:
dt=from header(dt) or .004 time sampling interval
dx=from header(d2) or 1.0 midpoint sampling interval

Try:

$ sumigpspi < simple.su dx=40 dz=12 nz=150
viile=vel.fdmig.simple > pspi.simple.su

99

100

All of these programs are similar in structure, with only the interpolation algorithm
being different. Each of these algorithms is easily extended to prestack application (with
amplitudes not being preserved).

Note: All of these programs expect an input velocity in terms of interval velocities
as a function of (z,z). Correspondingly, the output files of all of these programs are
depth sections, which, if everything has been done correctly, is a representation of a cross
section through the earth.

7.8 Lab Activity #7 - Shell scripts

By now everyone is tired of typing the same commandlines, repetetively. Furthermore, it
is easy to forget exactly what was typed for further testing. To remedy this problem we
will now capture these commandlines into a program called a “shell script.” The shell
script is one of the most powerful aspects of Unix and Unix-like operating systems.

For example, we can capture all of the migrations above into a single script for com-
parison. Begin by typing

cd Temp2

and opening a file called Migtest using your favorite editor. The contents of Migtest
should be:

#! /bin/sh
set —-x

Stolt
sustolt < simple.su cdpmin=1 cdpmax=80 \
dxcdp=40 vmig=2000 tmig=0.0 > stolt.simple.su
gazdag
sugazmig < simple.su dx=40 vmig=2000 tmig=0.0 > gaz.simple.su

phase shift
sumigps < simple.su dx=40 vmig=2000 tmig=0.0 > ps.simple.su

finite difference
sumigfd < simple.su dx=40 dz=12 nz=150 \
viile=vel.fdmig.simple > fd.simple.su

split step

sumigsplit < simple.su dx=40 dz=12 nz=150 \
viile=vel.fdmig.simple > split.simple.su

100

101

phase shift plus interpolation
sumigpspi < simple.su dx=40 dz=12 nz=150 \
viile=vel.fdmig.simple > pspi.simple.su

exit O

The top line indicates that the Bourne shell (sh) is being used to run the commands
that follow. The “set -x” tells the Bourne shell interpretor to echo each command as it
is being run. The backslashes (

) indicate are line continuation symbols and should have no spaces following them.

When you have finished typing in the contents of the Migtest, then save the file.
You will need to change the permissions of this file to give the script execute permission.
This is done via

$ chmod u+x Migtest
You may now run the shell script by simply typing:
$ Migtest

If you get a “Migtest: command not found” error but the permissions are correct, you
likely need to have ”.” on your path. You can change your path, or type equivalently

$./Migtest

to run Migtest. Each command within the shell script is run in succession.
We may consider writing a shell script called ViewMig with the contents

#! /bin/sh

Stolt
suxwigb < stolt.simple.su title="Stolt" wbox=800 hbox=200 d2=40 \
xbox=200 ybox=550 &

gazdag
suxwigb < gaz.simple.su title="Gazdag" wbox=800 hbox=200 d2=40 \
xbox=200 ybox=550 &

phase shift
suxwigb < ps.simple.su title="Phase Shift" wbox=800 \
hbox=200 d2=40 xbox=200 ybox=450 &

finite difference

suxwigb < fd.simple.su title="Finite Difference" \
wbox=800 hbox=200 d2=40 xbox=150 ybox=350 &

101

102

Fourier finite difference
suxwigb < ffd.simple.su title="Fourier Finite Difference" \
wbox=800 hbox=200 d2=40 xbox=150 ybox=350 &

split step
suxwigb < split.simple.su title="Split step" \
wbox=800 hbox=200 d2=40 xbox=150 ybox=250 &

phase shift plus interpolation
suxwigb < pspi.simple.su title="PSPI" \
wbox=800 hbox=200 d2=40 xbox=0 ybox=0 &

exit O

As before, save ViewMig, and change the mode via

chmod u+x ViewMig

to make the file executable. Run the command by typing ViewMig on the commandline:
$ ViewMig

You may vary the parameters to change the appearance of the plot. The idea of
ViewMig is to give side by side comparisons of the various migration types.

7.9 Homework #3 - Due 17 Sept 2015 (Thursday
session) and 22 Sept 2015 (Tuesday Session).

Rewrite the shell script Migtest (combining ViewMig so that it saves plots as PostScript
output (i.e. use supswigb or supsimage. Compare the output of the different migra-
tion methods. Take care to recognize that you may need vastly different values for
hbox= and wbox= or height= and width= by checking the self documentation for
supsimage, psimage, supswigb, and pswigb. Do not set xbox= and ybox=.

Take particular note of the appearance of the output, any noise or artifacts you see.
Include comparison figures, commands, and commentary. Again, submit no more than 3
pages maximum as a PDF file.

7.9.1 Hints

PostScript is a graphics language created by Adobe systems which is the forerunner to
PDF'. PostScript is still widely used and has not really been replaced by PDF.

On most systems there is a tool for viewing PostScript format files. On Linux systems
one such tool is gs which is the GhostScript interpreter. GhostScript is a powerful
graphics data conversion program. Another PostScript viewer gv which is GhostView.
You may be able to view your .eps files with gs

102

103

$ gs filename.eps

either the plot will open on the screen, or a new icon will appear on the bar of icons on
the left side of your screen. You should also find that if you are using OpenOffice (or
LibreOffice) Writer that you should be able to drag and drop PostScript files into your
OpenOffice (or LibreOffice) Writer document, directly.

When using any graphics program you need to be aware of its options. In SU, make
sure that you type:

supsimage
psimage
supswigb
pswigb
supswigp
pswigp

hH P P fH P P

so that you can see all of the various options that these programs may expect. Note
that the dimensions of the plots are in inches, and that some programs expect plot
dimentions as wbox= hbox= whereas others expect the dimensions to be given as
width= height=. For example. Note that the color schemes are completel different in
the PostScript generating programs, from thei X-windows graphics program counterparts.

7.10 Lab Activity #8 - Kirchhoff Migration of
Zero-offset data

In 1978, Bill Schneider published his Kirchhoff migration method. The program that
implements this in SU is called sukdmig2d.

There are two shell scripts in /data/cwpscratch/Data2 that you will need to be able
to run this on the simple.su data. Go to your home directory, make a temporary directory
called Temp2, and copy

$ cd /gpfc/yourusername

$ mkdir Temp2

$ cp /data/cwpscratch/Data2/Rayt2d.simple Temp2

$ cp /data/cwpscratch/Data2/Kdmig2d.simple Temp2

$ cp /data/cwpscratch/Data2/simple.su Temp2

$ cp /data/cwpscratch/Data2/vel.kdmig.simple Temp2
$ cd Temp2

Furthermore, you will need to make sure that the headers are correct on simple.su.
You should see:

103

104

$ surange < simple.su

80 traces:

tracl 180 (1 - 80)

cdp 180 (1 - 80)
trid 1

sXx 0 3160 (0 - 3160)
gx 0 3160 (0 - 3160)
ns 501

dt 4000

If not (for example, if the sx and gx fields are not set), then do the following

$ mv simple.su simple.orig.su
$ sushw < simple.orig.su key=sx,gx a=0,0 b=40,40 > simple.su

(If the source and geophone positions are not set, then the sukdmig2d program will
think that all of the input data are at the position sx=0, gx=0.)

The method of migration is called “Kirchhoff” because the technique is based on
an integral equation called the Kirchhoff modeling formula, which is a high-frequency
representation of the wavefield emanating from a reflector in the form of an integral
over the reflector. Some people like to think of the Kirchhoff integral as describing an
“exploding reflector” model of reflectivity. In some sense, the Kirchhoff migration formula
is an approximate inverse of the Kirchhoff modeling formula, meaning that we are in an
approximate sense solving for the reflectivity in the subsurface.

The migration integral equation may be implemented as such, or as a sum (an in-
tegral) over diffractions (the diffraction stack). In either case, the Kirchhoff migration
formula may also be called a “Kirchhoff-WKBJ migration,” where the WKBJ (Wentzel,
Kramers, Brilliouin, Jeffreys) denotes that ray theoretic quantities are being used. Most
importantly traveltimes and some estimate of ray-theoretic amplitudes need to be com-
puted for the background wavespeed profile to do the migration. If you recall, we might
view migration as moving data up or down along a light cone. Approximating the wave-
field by ray tubes is one way of doing that.

The shell script Rayt2d.simple runs the program rayt2d, which generates the nec-
essary traveltime tables. The shell script Kdmig2d.simple runs sukdmig2d on the
simple.su data. Read each shell script by typing:

$ more Rayt2d.simple

#! /bin/sh

rayt2d vfile=vel.kdmig.simple \
dt=.004 nt=501 fa=-80 na=80 \
fz=0 nz=501 dz=4 \

fx=0 nx=80 dx=40 ek=0 \

104

105

nxs=80 fxs=0 dxs=40 ms=1 \
tfile=tfile.simple

xmovie < tfile.simple clip=3 n1=501 n2=80 loop=1 title="%g traveltime table" &

You may type ‘q’ to get out of the more program.

The program rayt2d generates a traveltime table containing the traveltime from each
source to each receiver for every point in the model. The movie shown by xmovie shows
these traveltimes as shades of gray. The idea of running the movie over the traveltimes
is to see if there are any inconsistencies in the collection of traveltimes.

$ more Kdmig2d.simple
#! /bin/sh

sukdmig2d infile=simple.su outfile=kdmig.simple.su ttfile=tfile.simple \
ft=0 fzt=0 nzt=501 dzt=4.00 angmax=80.0 \

fxt=0 nxt=80 dxt=40 fs=0 ns=80 ds=40 \

dxm=40 v0=2000 noff=1 off0=0 doff=0

You may type ‘q’ to get out of the more program.

The program sukdmig2d performs the Kirchhoff migration drawing on the travel-
times created by rayt2d that are in the file tfile.simple. Indeed, if a person had a
better traveltime table generator, then this program could use those traveltimes instead.

To apply the Kirchhoff migration to the dataset simple.su we first type:

$ Rayt2d.simple

to generate the traveltime tables for sukdmig2d. You will notice that a little window
showing a movie will appear. You may grab the lower corner of this window by clicking
and dragging with your mouse to stretch the image to a larger size. This movie shows
the map of traveltimes to each point in the subsurface from the common source-receiver
position. As this is only a constant-background model, we would expect that the curves
of constant traveltime (wavefronts) are circles. You should be able to detect this in the
change of the grayscale. If the curves do not appear to be perfect circles, this is due the
aspect ratio of the plot. You may stretch the plot so that it has the correct aspect ratio.
To perform the the Kirchhoff migration we type

$ Kdmig2d.simple
the resulting migrated data is the file kdmig.simple.su which you may view via

$ suximage < kdmig.simple.su &

105

106

7.11 Spatial aliasing

You may have noticed that the output from migrating the simple.su test pattern, no
matter what migration method is used, contains artifacts. Because all of the various
migration methods tried have more or less the same pattern of artifacts, we are led to
suspect that this is caused by the simple.su dataset, rather than the migration routines
themselves.

We can study the problem by migrating a different version of the test pattern called
interp.su

$ cd /gpfc/yourusername/Temp2
$ cp /data/cwpscratch/Data2/interp.su
$ suxwigb < interp.su xcur=3 title="interp data"

$ surange < interp.su
$ surange < simple.su

You will notice that interp.su appears to show the same data as the original simple.su
data, but surange shows that there are 159 traces, instead of the 80 traces that were in
simple.su. The interp.su data were made by using the program suinterp interpolate
the traces in simple.su. The interpolation was done via the command

$ suinterp < simple.su |
sushw key=tracl,cdp a=1,1 b=1,1 > interp.su

The sushw program fixes the header values so that the trace numbers are accurately
represented.

If we run sustolt to migrate the interp.su data and compare this with performing
Stolt migration on the original simple.su data

$ sustolt < interp.su cdpmin=1 cdpmax=159 dxcdp=20 vmig=2000 tmig=0 |
suxwigb xcur=3 title="interpolated"

$ sustolt < simple.su cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |
suxwigb xcur=3 title="simple data"

then we see that the interpolated data yield a much better image. Please note that
cdpmax=159 and because the data are interpolated, the spacing between traces is
dxcdp=20, which is half of the value used for the previous tests because the interpolation
process put a new trace between every existing trace.

You may rerun the Migtest shell script changing simple.su to interp.su, taking
care to change the input parameters to correctly reflect that the number of traces is 159
and that the spacing between them is cut in half to a value of 20.

7.11.1 Interpreting the result

We have several ways of interpreting the presence of artifacts in the migrated simple.su
data.

106

10 15 20

1.05-

1.10-

1.15+

simple (1.05,10)(1.18,20)

b)

107

20 30 40

1.05-

1.10-

1.15+

simple (1.05,20)(1.18,40)

Figure 7.2: a) The simple.su data b) The same data trace-interpolated, the interp.su
data. You can recognize spatial aliasing in a), by noticing that the peak of the waveform
on a given trace does not line up with the main lobe of the neighboring traces. The data
in b) are the same data as in a), but with twice as many traces covering the same spatial
range. Fach peak aligns with part of the main lobe of the waveform on the neighboring

trace,

so there is no spatial aliasing.

107

108

First of all, we may consider the spacing between the arrivals on successive traces to
be so separated that each arrival acts more like a single point input, so the arcs shaped
artifacts represent impulse responses.

Second, we may view the artifacts as representing terminations in the integral that
is implicit in the inverse Fourier transform, that is the actual mathematical operation
of (f, k) migration. So these terminations give rise to endpoint contributions where the
jumps in the data act like discrete limits of integration.

The third interpretation is that the input arrivals are spatially aliased so that the
Fourier transform process thinks that certain high spatial frequencies in the data, are
really low spatial frequency information, and are putting this information in the wrong
place. It is this last interpretation that we would like to investigate further.

7.11.2 Recognizing spatial aliasing of data in the space-time
domain

If we view these two input datasets in detail

$ suxwigb < simple.su xcur=3 title="simple" interp=1 &
$ suxwigb < interp.su xcur=3 title="interp" interp=1 &

by clicking and dragging the rubberbandbox, we can view these datasets in detail. If we
zoom in on traces 10 through 20, and time values 1.05s to 1.15s in the simple.su data
as in Fig 7.2a). In the interp.su data, these correspond to the traces 20 through 40 as
in Fig 7.2 b). The interp=1 allows the wiggle traces to be displayed smoothly at any
scale of zooming.

The spatial aliasing is evident in the simple.su data, because peak of the waveform
on a given trace does not align with the main lobe of the waveform on the neighboring
traces. Effectively the spatial variability of the data are undersampled in simple.su
because the trace spacing is to coarse. In real seismic data, great pains are taken to have
receiver spacing sufficiently fine to prevent spatial aliasing. However, there are situations,
particularly in the case of out-of-plane noise events, that noise can be spatially aliased.
Furthermore, we may have missing traces that cause artifacts in migration.

7.11.3 Recognizing spatial aliasing in the (f,k) domain

The term spatial aliasing implies that there is a spatial subsampling which occurs, imply-
ing that there is a wrapping of data in the wavenumber domain. We can see an example
of this in the comparison of (f, k) transforms of simple.su data, with the interp.su data
in Figure 7.3. In Figure 7.3a)and b) the simple.su and interp.su data are shown in
the (f, k) domain. The interp.su data, show a typical (f, k) domain representation of
seismic data.

As with aliasing in the frequency domain, we see that as we reach the maximum
wavenumber—the equivalent of the Nyquist frequency in the (w, k) domain, the spectrum
is still nonzero. Typically we like to have data vanish smoothly at the Nyquist frequency

108

109

wavenumber k_2 wavenumber k_2
0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4
0 1 1 1 1 1 0 1 1 1 1 1
20
40-
~ ~
< <
& 60 & 60
c c
(] (]
> >
o o
@ @
= 804 = 804
100+ 100+
120- 120-
Simple Simple interpolated
c) . d) .
0.5 0 0.5 1.0 0.5 0 0.5
1-0 1 1 1 1 1-0 1 1 1

Simple (k1,k2) domain Simple interpolated (k1,k2) domain

Figure 7.3: a) Simple data in the (f, k) domain, b) Interpolated simple data in the (f, k)
domain, ¢) Simple data represented in the (k., k,) domain, d) Interpolated simple data
in the (k., k;) domain. The simple.su data are truncated in the frequency domain, with

the aliased portions folded over to lower wavenumbers. The interpolated data are not
folded.

109

110

(or wavenumber) to ensure the absence of aliasing without introducing ringing in the
data.

Meaning of the wavenumber domain

But what does the wavenumber domain mean? As we will see in the next section, there
is a relationship between the magnitude of the k vector and the quantity w/c in data
owing to the wave equation. For zero offset reflection seismic data, we actually have
|k| = 2|w|/c, were the factor of 2 comes from the fact that we are dealing with 2-way
traveltimes. Thus for our seismic datasets, we would expect the range of |k| values to be

2 ’wmin ’ 2 |wma:p ’

< [k <

where wy,i, and wy,q, are the minimum and maximum frequencies in the data.

We freely trade time ¢ for depth x5 so it should not be a shock that we may consider the
data, not in the (f, k) domain, but rather in the 2D wavenumber domain (k1, k2), where
ki is the vertical wavenumber and ko is the horizontal wavenumber. Figures 7.3¢)and d)
show the corresponding images that we obtain by making these assumptions, using the
program suspecklk2 to calculate the 2D spatial transform amplitude spectrum. The
spectrum is symmetric because the data are real valued. The Fourier transform of a real
valued function is always symmetric.

The fan-like shape results because we may identify k vectors with “ray vectors.” The
angualar range in the k-domain represents that angular range of rays which illuminated
the reflector in the simple model.

7.11.4 Remedies for spatial aliasing

Fundamentally, spatial aliasing can only be completely avoided if data are sampled suffi-
ciently finely in space to accurately represent all spatial frequencies (alternately wavenum-
bers) in the data. As we have seen above, simply having receivers more closely spaced
significantly reduced the spatial aliasing in our test example. While collecting the data
with fine enough spatial sampling, in the first place, is the best remedy, we may not
alwatys have adequate spacing for all frequencies in the data.

Mathematically we can see how frequency bandwidth corresponds to spatial coverage.
If we write the wave equation

[VQ - 62(198) aa;] u(z,t) =0

and assume a solution of the form

u(z,t) ~ A(:I:)e"(k'm_“’t)7

110

112

that is, we assume a space and time oscillating solution, then we obtain

[V2 N 02(1$) aatzl (A(m)ei(k:w—wt)) _ [(Zk)2 _ g(’(‘g)] A(w)ei(kﬁ-m—wt)

¢k sz - (_“’“’)> VA(z) + V2 A(z) | e F@eD

()
= 0.

Canceling common terms, and saving only the term with the highest powers in w and k
we have

w
—(k)? =0
(k)" + ()
implying that
K= 1

c(x)
Thus when |w| and |k| are “large”, we have a relationship between |k| and |w|/c(x) that
tells us that reducing the bandwidth in w will also reduce the bandwidth in k.

Thus, frequency filtering can be used to combat spatial aliasing, provided that all
frequencies are not spatially aliased in Fig 7.4 there is a comparison with such a frequency
filtered case. The simple data were filtered via the program sufilter

sufilter < simple.su £=0,5,20,25 > simple_filtered.su

to limit the bandwith. Stolt migration was applied to both the original unfiltered version
of simple.su and the frequency-filtered version. The frequency filtered version shows
much less of the effect of spatial aliasing, but also has lower resolution, which is to say
that the reflector is fatter. This does not seem to be a problem on an image that has
only one reflector, but if there were a bunch closely spaced reflectors, we could easily lose
resolution of these reflectors with frequency filtering.

Dip filtering

The third approach to spatial aliasing is filtering in the (f, k) domain. Becuase we want
to preserve as much of the frequency content of the data as possible, the filter that we
want to use should preserve the magnitude of the wavenumber vectors in the data, but
restrict the angles so that we suppress aliasing. Such a filter is called a dip filter.

We may experiment with sudipfilt by trial and error

$ sudipfilt dt=1 dx=1 < simple.su slopes=-2,-1,0,1,2 amps=0,1,1,1,0 |
sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |
suxwigb xcur=3 title="migration after dipfilter" d2=40 &

$ sudipfilt dt=1 dx=1 < simple.su slopes=-4,-3,0,3,4 amps=0,1,1,1,0 |
sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |

112

| |
e 1 ™ b
e ———————_ HHHHL e —————— S ————————
A | ¥
—_—— _—
A !
e a B] J——
—_—
e ———————— %ﬁ f—— e
: !
S e e e iﬁ e)
: |
} |
o 1 s | F—— e ———
|
|
P —————— ft..lff)lls.l.l][l[lrl - ————————
; |
e tHWH,H.HNIHA P e
e e) -ﬁ._\.ﬂi\ﬁ‘ 1 i S ey A |
0 FEPm—m—————— 0
o pman] =
E]l\’jﬂi?!zlhwﬂ.%ﬂ.gw“”‘, e e T T T T T
=== e
i | e
=== = _—
= iz
1

|
[
J Ii

e —— ™ e s oo e et

|
E
i

|
i
!

il
Il
il

-
o
i

|
l
u

ol 0 ,.
P — s —

e ———
[Te)
i | :

= e = ——
i e e e
u.y.,.,»nd.HHﬁ =
et ! .

P ———————F Y 41)] =——= ——

i =

¥ Biors | :

=
N PSRy 4. oy | . dlb
. | ; P
— N o — ~N

%)

114

a) b)
0 1000 2000 3000 0 1000 2000 3000
-1.0-¢ L Il Il -1.0-¢ L L L
-0.51 -0.51
0.5- 0.5-
slopes=-6,-5,0,5,6 d) slopes=-4,-3,0,3,4
C) 0 1000 2000 3000 0 1000 2000 3000
-1.0-¢ Il L L -1.0-¢ Il L Il
-0.54
e i

-0.5+

0.54

0.54

slopes=-2,-1,0,1,2

slopes=-3,-2,0,2,3

Figure 7.6: The (k1,%2) domain plots of the simple.su data with the respective dip

filters applied in the Stolt migrations of Figure 7.5

114

115

suxwigb xcur=3 title="migration after dipfilter" d2=40 &

$ sudipfilt dt=1 dx=1 < simple.su slopes=-5,-4,0,4,5 amps=0,1,1,1,0 |
sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |
suxwigb xcur=3 title="migration after dipfilter" d2=40 &

$ sudipfilt dt=1 dx=1 < simple.su slopes=-6,-5,0,5,6 amps=0,1,1,1,0 |
sustolt cdpmin=1 cdpmax=80 dxcdp=40 vmig=2000 tmig=0 |
suxwigb xcur=3 title="migration after dipfilter" d2=40 &

Dip filtering is less satisfying in this case, because where it works well to eliminate the
spatial aliasing, it also eliminates the dips in the image which constitute the most steeply
dipping parts of the structure. The effect in the (k1, k) domain may be seen in Figure 7.6.
The resulting migrations of the dip filtered versions of may be seen in Figure 7.5. Where
the spatial aliased noise is suppressed the best, the steeply dipping parts of the syncline
are not imaged at all. Again, we see that trace interpolation is the best option for
suppressing spatial aliasing.

7.12 Concluding Remarks

Investigators in oil companies implemented variations of Hagedoorn’s graphical migra-
tion, using notions from the theory of wave propagation and methods from signal pro-
cessing theory. May different types of “migration” were thus created. By accident some
of these methods were “amplitude preserving,” meaning that reflectivity information is
preserved in the image produced by such a migration.

Such “true amplitude” or amplitude preserving migrations became important when
issues of reservoir characterization by seismic methods became important. The first of
these reservoir characterization methods, first discovered in the 1970s was called the
“bright-spot” method, which allowed the identification gas sands in the Gulf of Mexico
by their high-amplitude reactivities. In reality, all that was done to see the bright spots
was for seismic data processors to stop normalizing away the amplitude differences in
their migrated images. This change marked the beginning of seismic migration as a
parameter estimation tool.

115

Chapter 8

Zero-offset v(t) and v(x, z) migration
of real data, Lab Activity #9

Now that you have had an introduction to a few zero-offset migration codes, we will
apply some of these migrations to a dataset consisting of real data. As before, make a
temporary directory in a scratch directory area. Call this one Temp3.

$ cd /gpfc/yourusername

$ mkdir Temp3

cd Temp3

cp /data/cwpscratch/Data3/Stoltmig .

cp /data/cwpscratch/Data3/PSmig .

cp /data/cwpscratch/Data3/seismic3.su .
cp /data/cwpscratch/Data3/Suttoz.stolt .
cp /data/cwpscratch/Data3/Suttoz.psmig .

€hH A P H P PH

These data were collected over a structure in the North Sea, known as the Viking
Graben. The data were shot by Mobil Corporation back in the 1980s. This is a stacked
section. The data seismic3.su have been gained, have had multiple suppression applied
via supef (Wiener spiking and Wiener prediction error filter deconvolution), have been
NMO corrected (velocity analysis performed with suvelan, and normal moveout cor-
rected via sunmo), dip-moveout corrected with sudmofk, and have finally been stacked
using sustack. The pre-processing is not very good. No migration has been applied.

First we check the header values on the data with surange

$ surange < seismic3.su

2142 traces:

tracl 1 2142 (1 - 2142)
tracr 1 120120 (1 - 120120)

fldr 3 1003 (3 - 1003)
tracf 1 120 (1 - 120)
ep 101 1112 (101 - 1112)

116

117

cdp 1 2142 (1 - 2142)
cdpt 1 120 (1 - 120)
trid 1

nhs 160 (1 -1)
gelev -10

selev -6

scalel 1
scalco 1

SX 3237 28512 (3237 - 28512)
gx 0 28250 (0 - 28250)
counit 3

mute 48

ns 1500

dt 4000

It is convenient to copy and paste this screen into a file called “Notes” for future reference.
We see that there are 2142 traces in the section, that the time sampling interval dt = 4000,
which is to say 4ms sampling, and ns = 1500 samples per trace. We know from the
headers on the original data that the spacing between midpoints, which is to say the
spacing between CMPs, is 12.5m.

You may view the data via:

suximage < seismic3.su perc=99
or
suximage < seismic3.su perc=99 verbose=1

The verbose=1 option will show you the actual clip values that perc=99 is giving you.
You may see what the actual values of bclip (the numerical value of the color black) and
wclip (the numerical value of the color white)

bclip=0.569718 wclip=-0.583124
You may then input clip values. For example
suximage < seismic3.su clip=.2 verbose=1

boosts the lower amplitudes. Try different values clip= to see what this does.

8.1 Stolt and Phaseshift v(f) migrations

The easiest migrations are the Stolt and Phaseshift migrations. It is common to do a
“quick look” at data by applying these types of migrations algorithms. Because a velocity
analysis has been applied to these data, we have a collection of stacking velocities as a
function of time, which we will make use of as an estimate of migration velocity.

If you type

117

118

$ sustolt
$ sumigps

and look carefully at the parameters for these programs, you will see that sustolt requires
RMS velocities as a function of time, whereas sumigps requires interval velocities.
If you look in the shell script Stoltmig, you will see

#! /bin/sh

sustolt < seismic3.su cdpmin=1 cdpmax=2142 \
tmig=0.0,1.0,2.5,3.45,4.36,5.1,5.45,5.95 \
vmig=1500,2000,3160,3210,3360,3408,3600,3650 \
dxcdp=12.5 > stolt.seis.su

exit O

Here the pairs vmig= are RMS velocities (the velocities that come from velocity
analysis—stacking velocities) for each time value in tmig=. These are only prelimi-
nary velocities taken from a single velocity analysis on the data.

If you look in the shell script PSmig, you will see

$ more PSmig

#! /bin/sh

sumigps < seismic3.su \
tmig=0.0,1.0,2.5,3.45,4.36,5.1,5.45,5.95 \
vmig=1500,2000,3738.45,3338,3876.32,3678.11,5706.7,4156.17 \
dx=12.5 > ps.seis.su

exit O

Here the pairs vimig= are interval velocities (the actual seismic wavespeeds) for each
time value in tmig=. The conversion of RMS to interval velocities is made through the
application of the Dix equation. In SU, the program velconv is useful for a number
types of velocities, including rms to interval velocities. The program suintvel is useful
for converting a few stacking velocities to interval velocities.

For example, you can run suintvel to convert the stacking velocities as a function of
time, used in the Stoltmig script into the interval velocities used in the PSmig script
via

$ suintvel t0=0.0,1.0,2.5,3.45,4.36,5.1,5.45,5.95
vs=1500,2000,3160,3210,3360,3408,3600,3650

118

119

The resulting velocities given by the value of v= below

h=0,1000,2803.84,1585.55,1763.72,1360.9,998.672,1039.04
v=1500,2000,3738.45,3338,3876.32,3678.11,5706.7,4156.17

The values of h= are the depths corresponding to the times in the t0= field. These
could be used for model building, but are not used in migration. Again, these values are
only preliminary.

If you look inside the shell script Suttoz.stolt

$ more Suttoz.stolt

you will see that the same velocities are used for depth conversion from the Stolt migrated
data (which is in time) to make a Stolt-migrated depth section.

Neither of these sets of velocities should be viewed as “exact”—-these are only prelim-
inary estimates. Notice, for example, that there is no lateral variation in these velocities.
These are only v(t), which implies a v(z), rather than a v(x, z), profile. Yet, a cursory
examination of the data shows a profile that dips to the right, indicating that there is
likely substantial lateral variation of the velocities in the subsurface.

You may run the Stoltmig shell script by typing

$ Stoltmig

you will see that the output file is stolt.seis.su. You may create a depth section version
of stolt.seis.su by typing:

$ Suttoz.stolt

The resulting output is the file stolt.depth.seis.su.
You may now plot all three of these files seismic3.su, stolt.seis.su, and the depth
section version stolt.depth.seis.su via

$ suximage < seismic3.su clip=.2 title="Stacked data" &
$ suximage < stolt.seis.su clip=.2 title="Stolt time section" &
$ suximage < stolt.depth.seis.su clip=.2 title="Stolt depth section" &

8.1.1 Questions for discussion

Compare the original data to the Stolt time migration. Compare how the diffractions
that appear in the stacked data are changed in the migrated sections. Are there artifacts?
What does the shape of the artifacts tell you about the migration wavespeed?

Look for geologic structures in the time migrated data. Compare these to the time
section. Compare the depth section to the time migrated section. Do you see all of the
data in the depth section? Look for geologic structures in the depth section.

Where is the water bottom? Do you see an unconformity? Do you see any faults?
Artifacts? Horst and graben structures? Any suspicious horizons that might be multi-
ples?

Is the migration velocity correct? Too high? Too low?

119

120

8.1.2 Phase Shift migration
We may now run the phase shift migration demo script PSmig by typing
$ PSmig

You will first notice first that it takes a bit longer to run the phase shift program than
it did with Stolt. The advantage to phase shift migration is that propagates the field
locally down in depth, so may handle the local variation of the background wavespeed
better. The output of this program is a time section. You may convert this to a depth
section by typing

$ Suttoz.psmig
As with the Stolt migration example, you may view the results via

$ suximage < seismic3.su clip=.2 title="Stacked data" &
$ suximage < ps.seis.su clip=.2 title="PS time section" &
$ suximage < ps.depth.seis.su clip=.2 title="PS depth section" &

8.1.3 Questions for discussion

You may want to compare these images with the Stolt migrations. Ask the same questions
as before. Is the image better in any way? Are there more artifacts, or fewer artifacts?
Has your opinion about the background wavespeed changed?

8.2 Lab Activity #10: FD, FFD, PSPI, Split step,
Gaussian Beam v(z, z) migrations

To create better images, having a migration that uses a background velocity profile that
varies both in horizontal and vertical position v(z, z) is required.

In the directory /data/cwpscratch/Datad we have several shell scripts that run 5 dif-
ferent types of migration. These are finite difference, Fourier finite difference, phaseshift
plus interpolation, split step, and Gaussian Beam (GB).

All of these were discussed in previous sections, with the exception of GB. The “GB”
stands for “Gaussian beam” and refers to the beam-like approximate wavefield. This
choice of “Green’s function” is often found to be an improvement on standard ray meth-
ods. Gaussian beam migration was invented by geophysicist Ross Hill in about 1990.
Typically, people in the industry usually make a distinction between ordinary Kirchhoff
migration and Gaussian Beam migration, however, Gaussian Beam migration is an ap-
plication of the Kirchhoftf migration technique using Green’s functions that are beams
with an amplitude that varies like a bell shaped, or Gaussian function in a cross section
of the beam.

We are going to migrate the same data, seismic3.su so copy the shell scripts Migtest.fd,
Migtest.ffd, Migtest.split, Migtest.pspi, and Migtest.gb from /cwpscratch/Data4/
to your Temp3 directory by

120

121

cd /gpfc/yourusername

mkdir Temp4

cp /data/cwpscratch/Data4/seismic3.su Temp4d
cp /data/cwpscratch/Datad4/Migtest.fd Temp4

cp /data/cwpscratch/Data4/Migtest.ffd Temp4d
cp /data/cwpscratch/Data4/Migtest.split Temp4
cp /data/cwpscratch/Datad4/Migtest.pspi Temp4
cp /data/cwpscratch/Datad4/Migtest.gb Temp4

cp /data/cwpscratch/Datad4/newvelxz.bin Temp4d
cp /data/cwpscratch/Data4/newvelzx.bin Temp4d

€ A H H P BH P P BhH P

where these last two files are background wavespeed profiles for You may view the back-
ground wavespeed profile by typing

$ ximage < newvelzx.bin n1=1500 legend=1
$ ximage < newvelxz.bin n1=2142 legend=1

By now, you should recognize that the model is 1500 samples in depth and 2142 sam-
ples in the horizontal direction. The file newvelzx.bin and newvelxz.bin are merely
transposed versions of each other. The reason both files are needed is that the first 4
migrations to be tested read in the wavespeed profile in constant depth slices, whereas the
Gaussian Beam migration reads the data in vertical slices. This is an oddity of coding,
nothing more.

It will take quite a bit of time to run all of these. In a classroom environment, have
different students run different scripts, so that all scripts are run in a reasonable amount
of time. In each case, simply type the name of the shell script to execute

$ Migtest.fd

$ Migtest.ffd

$ Migtest.split
$ Migtest.pspi
$ Migtest.gb

Better yet, if you want to get timing information, you may use the Unix time function.

time Migtest.fd
time Migtest.ffd
time Migtest.split
time Migtest.pspi
time Migtest.gb

&hH H P fH P

Compare your results. The notion of cost must be apparent by now. Some algorithms
are more expensive in computer time than others. If we merely want to have quick looks,
then you cannot beat Stolt migration. However, as more image quality is desire, and
more realistic models of the background wavespeed is desired, then the more expensive
migrations become more attractive.

121

122

8.3 Homework Assignment #4 Due 24 Sept 2015
Thursday session, 28 Sept 2015 Tuesday group -
Migration comparisons

Run three of the above migration shell scripts and report on the computational cost
and quality of the migrations. Show commands run, make properly labeled plots, and
write brief commentary again, a maximum of 3 pages, in PDF format and email to your
instructor. Which migration gives the best image? Which migration is the fastest?

8.4 Concluding Remarks

It may have occurred to you to ask why so many different migration algorithms exist. In
part, this is cultural. Within company and academic environments, different theories of
migration were explored. Part of this is owing to the business culture. If one company is
supplying a trademarked service, can other companies compete, unless they invent their
own “better” technique? Part of this depends on what we want from the data. Are
amplitudes important, or is it all image quality alone? Which is more important, speed
or accuracy? Time is money, but then an image that fails to direct the driller to the
correct target may be more costly in the long run.

Phase shift and finite difference algorithms are more expensive, but may offer better
images, for the reason that the process may be thought of as wavefront continuation.
Maintaining the continuity of the backward propagating wavefront, should, in theory
make a more physically correct imaging process. Kirchhoff migrations are less computa-
tionally expensive, but these depend on shooting rays or ray tubes. Rays are sensitive to
small variations within a model. If the background wavespeed profile is not sufficiently
smooth (i.e. twice differentiable) then inconsistencies in the calculated ray field may re-
sult with small variations introducing larger errors. Thus, any cost savings realized may
be done at the expense of improper reconstruction or propagation of wavefronts.

Stolt migration relies on neither ray tracing nor wavefront continuation, but on the
assumption that a stretching and filtering process in the (f, k) domain can accurately
undo the effects of wave propagation on the wavefield, at the expense of never having the
correct background wavespeed. Stolt migration is fast.

Finally, the beginning student learns that “diffractions are bad.” However, if we see a
lot of diffractions, then this means the processing from noise suppression to velocity anal-
ysis to NMO and stack were done well enough to make the diffractions not be obliterated.
In this sense, “seeing a lot of diffractions after stack is good.”

122

Chapter 9

Data before stack

So far, all of our data sets have been zero-offset synthetic data and poststack datasets.
We now seek to investigate the world of prestack data. While we will find that prestack
migrations are beyond the capability of the machines in the lab, except for very small
examples, we will find that there are a host of prestack processes that we can apply.
Indeed, most of the “processing” in seismic data processing is on prestack data. We will
find that we will be able to see far more in our dataset than we saw in the examples of
the previous chapter. Indeed, students have the experience of making better images than
published images on our dataset!

As we proceed, students also may notice that we are having more fun, because this
is more like real industry processing, unlike the first few chapters, where our data were
largely test patterns.

9.1 Lab Activity #11 - Reading and Viewing
Seismic Data

For the lab examples that follow make a temporary directory in your working area called
Tempb area and type

$ cd /gpfc/yourusername
$ mkdir Tempb

As was discussed at the beginning of these notes, one of the popular seismic data exchange
formats is the SEG Y data format. Data may be in this format on tape media, but today

it is equally common for SEG Y data to be files stored on other media, such as CD, DVD,

or USB disk drive and memory stick devices. These latter media are preferable for easy
transport.

Our test dataset is stored as an SEG Y file called seismic.segy in /data/cwpscratch/Datab

as a data file in the SU format. This file is big, about 800 megabytes. Make sure that

you are working in an area on your system capable of storing several gigabytes. You may
copy this file to your working area via

123

124

$ cd /gpfc/yourusername
$ cp /data/cwpscratch/Datab/seismic.segy Tempb

9.1.1 Reading the data

The data are in SEGY format, and need to be read into the SU data data format. This
is done via:

$ cd Tempb
$ segyread tape=seismic.segy verbose=1 | segyclean > seismic.su

Reading seismic data, particularly tapes, is more of an art than a science. If you ever
request data from someone, make sure that you get the data in a format that you can
read. Sometimes it is best to have them send you a small test dataset, before committing
to a larger set.

Seismic processing software, whether commercial or open source, has the property
that there is an internal or working data format that usually differs greatly from the
external or “data exchange” formats that data usually are transferred in. In addition,
there are field data recording formats that differ still from the data exchange formats.
The SU data format is based on the SEG Y format, but is not the same. So, we must
convert our data from the data exchange format to the SU format before we can work
on the data.

9.2 Getting to know our data - trace header values

Once we have converted the dataset to SU format there are many ways to begin learning
about the data. For example we might want to merely view the size of the dataset with
Is -1

$ 1s -1 seismic.su

will tell us the size of the data. In this case, it also is about 800 megabytes. We may use
surange to determine the header settings, in particular to see if they are correct

$ surange < seismic.su

120120 traces:
tracl 1 120120 (1 - 120120)
tracr 1 120120 (1 - 120120)

fldr 3 1003 (3 - 1003)
tracf 1 120 (1 - 120)

ep 101 1112 (101 - 1112)
cdp 1 2142 (1 - 2142)
cdpt 1 120 (1 - 120)

trid 1

124

125

nhs 1

offset -3237 -262 (-3237 - -262)
gelev -10

selev -6

scalel 1

scalco 1

sSX 3237 28512 (3237 - 28512)
gx 0 28250 (0 - 28250)
counit 3

mute 48

ns 1500

dt 4000

Because this takes awhile to run, once you have obtained the output from surange, open
a file name “Notes” with your favorite editor, and copy and paste the screen output from
surange into Notes. We can see such information as the range of header values, see if
the numbers make sense. That sort of thing.

We need to know the total number of traces, the total number of shots, the number
of receivers per gather, the time sampling interval, the number of samples. These are all
things which we will need for further processing

9.2.1 Setting geometry

One of the most time consuming and difficult, and yet, one of the most important steps
in reading seismic data sets occurs in this step of the process. This is called setting
geometry. The process is one of converting field observation parameters recorded in the
field observers’ logs into trace header values. The process itself is often time consuming,
if everything is correct in the logs, but typically there are errors in observers’ logs that
complicate this process. It can take as long as a month to set the geometry in a 3D
dataset!
In SU, the tools for setting geometry are

suaddhead
sushw

suchw
sudumptrace
suedit
suxedit
suutm

hH H P fH H P P

We may make use of sushw and suchw later in the notes. For the most part, we will
assume that our dataset has had geometry set properly.

125

126

9.3 Getting to know our data - Viewing the data

If we know that our data have the trace headers set correctly the next part of working
with the data is to view subsections of the data to see if there are missing traces, zero
traces, and bad traces. We are interested in the quality and reproduceability of the data
across the section. We are also interested evaluating whether there is noise that may
need to be suppressed.

9.3.1 Windowing Seismic Data

It is always a good idea to look at some small part of the data to see if you have data.
For example is not uncommon to want to look a the first N traces. For example:

$ suwind key=tracl count=1000 < seismic.su |
suximage perc=99 &

gives a quick look at the data. We can see gathers of some variety. To see what kind of
gathers we have (shot versus CMP), the header values will help us. Typing the following:

$ sugethw sx gx offset ep cdp < seismic.su | more

sx=3237 gx=0 offset=-3237 ep=101 cdp=1
sx=3237 gx=25 offset=-3212 ep=101 cdp=2
5x=3237 gx=50 offset=-3187 ep=101 cdp=3
s8x=3237 gx=75 offset=-3162 ep=101 cdp=4
sx=3237 gx=100 offset=-3137 ep=101 cdp=b
5x=3237 gx=125 offset=-3112 ep=101 cdp=6
sx=3237 gx=150 offset=-3087 ep=101 cdp=7
5x=3237 gx=175 offset=-3062 ep=101 cdp=8
sx=3237 gx=200 offset=-3037 ep=101 cdp=9
sx=3237 gx=225 offset=-3012 ep=101 cdp=10
5x=3237 gx=250 offset=-2987 ep=101 cdp=11
sx=3237 gx=275 offset=-2962 ep=101 cdp=12

126

127

trace number

400 600 800 1000

200

first 1000 traces

Figure 9.1: The first 1000 traces in the data.

127

128

shows the values of several important header fields. We can eventually figure out that
these are shot gathers by noting which fields change the most slowly. In this case,
the source position sx and the energy point number ep are the slowest changing. Shot
gathers are also called common shot gathers, shot records, and common source
gathers. These terms are used interchangeably.

It is a good idea to get to know your data by flipping through it, much as you would
flip through a coffee table picture book. We can view all of the shot records by using
suxmovie.

$ suwind count=12000 skip=0 < seismic.su |
suxmovie n2=1200 loop=1 perc=99 title="Frame Jg" &

It takes a few minutes, but eventually a window will come up, which you can re-size by
dragging on the lower right corner. This window will show a movie of 10 gathers at a
time, with the frame number being shown in the title. You can stop the movie at a frame
by pressing the far right mouse button. You may see the successive 12000 trace blocks
by setting skip=12000, skip=24000, and so forth.

Events with differing moveouts

Stop the movie at any frame, and zoom into view features of the shot gathers. Some
features to look for are multiples. These are repetitions in the data in time caused by
reverberations in the water column. Pegleg multiples may appear to be arrivals with
hyperbolic moveout that show a long time moveout in a gather. Whereas reflections will
have less moveout, indicating higher velocity, but also be hyperbolic in shape. Reflections
that have an hyperbola that peaks away from the shot position will indicate a dipping
bed.

Direct arrivals will tend to have a linear moveout, as will ground roll on land data.
that appears to roll over within the section.

9.4 Getting to know your data - Bad or missing
shots, traces, or receivers

In real data there may be bad traces or missing traces. Some shots may be bad, or there
may be consistent or systematic errors in the data.

9.4.1 Viewing a specific Shot gather

Close the movie window, and capture a particular shot gather for study. For example,
we will capture the shot gather at ep=200, but any will do. This is done via suwind

128

129

a) offset (meters) D) trace number

o -3000 -2000 -1000

20 40 60 80 100 120

shot ep=200 shot ep=200

Figure 9.2: a) Shot 200 as wiggle traces b) as an image plot.

$ suwind < seismic.su key=ep
min=200 max=200 > shot.ep=200.su

This will take a few minutes. Once you have this shot gather, you may view the data
both as an image plot and as shot gather

$ suximage < shot.ep=200.su perc=99 title="shot ep=200" &
$ suxwigb < shot.ep=200.su perc=99 title="shot ep=200" &

The view of the data is not particularly good, because we have not applied a gain to the
data to take into account the amplitude decay with distance traveled.

9.4.2 Charting source and receiver positions
We may view a chart of the source-receiver positions with suchart. This is done via

suchart < seismic.su |
xgraph n=120120 linewidth=0
labell="sx" label2="gx" marksize=2
mark=8 title="sx gx chart" &

If you zoom in on the plot, missing shots are revealed. Another popular type of chart
called the “stacking chart” is discussed below. The suchart program is useful as a
quality control tool, because any errors in the headers, or inconsistencies in the data are
immediately revealed by the plot of header values.

129

130

9.5 Geometrical spreading aka divergence
correction

The amplitudes of seismic waves experience a reduction in amplitude that is a function of
the distance r that the wave travels. There are two sources of this amplitude reduction.
The first is due to geometrical spreading. The wave energy remains constant, but as the
wavefront expands, the energy density reduces as a function of the increasing area of the
wavefront.

9.5.1 Some theory of seismic amplitudes

For constant velocity solutions to the constant-velocity scalar wave equation

1 0?
¥ | Ut) = W05 —)3y~)il —)

look like

1
Ula,y. 2 b0, 0, 20) = () Wit = /o),

where (z,y, z) is the coordinates of a point on the wavefront, (xq,yo, 20) are the coordi-
nates of the source, t is traveltime, ¢ is the (constant) wavespeed, we assume that the
source starts at time ¢t = 0, and

r= \/(x—:vo)2+(y—yo)2+(2—zo)2

is the radial distance from the source point to a point on the wavefront. W (t —r/c) is a
waveform traveling at speed ¢ which arrives at time r/c.!

In the real earth, the wavespeed varies with position, so the wavefront surface will not
be a simple spherical shell, it will be a complicated function. There may be focusings and
defocussings due to the velocity variations that cause the wave amplitude to decay by a
function that is more complicated than a simple 1/r. In reality the divergence correction
problem is a problem of modeling wave amplitudes as a function of the velocity model.

Anelastic attenuation

The second cause of wave amplitude reduction is due to anelastic attenuation. Rock may
be thought of as a kind of spring that undergoes distortion in a cyclical fashion as a
wave travels through it. Owing to frictional as well as due to more complicated effects
involving the motion of fluids in rock pore spaces, some of the seismic wave energy is
converted to heat. This failure of the material to behave exactly elastically is is called

IThe reader may have expected an “inverse square law” from experiences in undergraduate physics
classes, rather than a 1/r law. Energy density does diminish according to an inverse square law, but
because seismic wave energy is proportional to the square of seismic amplitudes, the 1/r amplitude loss
is consistent with an inverse square law of energy spreading.

130

131

“anelastic attenuation.” There is an additional loss of energy due to scattering, which is
called “scattering attenuation.”

The effect of anelastic and scattering attenuation is to reduce wave amplitudes expo-
nentially as a function of the number of cycles that the wave has traveled—distance in
wavelegths, and is usually expressed in terms of a “quality factor” Q. For example in the
frequency domain a decaying solution may be written as

_wr

u(z,y, z,w) = <47lr7°) w(w)e @
and w(w) is the frequency domain representation of the waveform represented by W (t —
r/c) above.

To correct for geometric spreading and attenuative amplitude loss, we may apply an
amplitude correction, known as a gain to the data. There are many gaining strategies,
we will discuss a couple of the more common ones.

9.5.2 Lab Activity #12 Gaining the data

One way to do this is to multiply the data by a power of time. This is done via sugain

$ sugain < shot.ep=200.su tpow=1 > gain.tpow=1.ep=200.su
$ sugain < shot.ep=200.su tpow=2 > gain.tpow=2.ep=200.su

and the effect is to multiply each amplitude on the trace by a factor of o,

A simple way of looking at this is that for an average constant velocity of ¢, the two-
way traveltime is ¢ = 2r/c, where r is the distance the wave has traveled to the reflector.
Hence 1/t o< 1/r, and thus 1/r geometrical spreading balanced by multiplying data by ¢.

This does not seem to be quite enough owing to the fact that the wavespeed generally
increases with depth, and the presence of anelastic attenuation. Commonly a factor of
t? is a better choice, but this may be too much. It may be that the value of the power
of ¢ will be a number 1 < tpow < 2. There are other effects. There may be a general
boosting of some amplitudes in such a way that larger amplitudes are boosted more
than smaller amplitudes. Thus, a global power may be applied. One example would
be to apply a square root function to the data which would be expressed in sugain by
the choice of gpow=.5. Finally, there may be isolated amplitudes that are just too
large. These amplitudes may be trucated by clipping the data, thus the qclip=.95 in
the application of sugain above.

In Jon Claerbout’s Imaging the Earth, there is a discussion of a sophisticated applica-
tion of gaining that would be applied in sugain via a choice of parameters that translates
into the options: tpow=2 gpow=.5 qclip=.95. The latter qclip= refers to clipping
on quantiles. What is a “quantile?”

This is so useful, that we have a special parameter for this called jon= wherein
jon=1 applies this combination of parameters in sugain. Caveat: Througout this
set of notes jon=1 is used because it is convenient, not because it is optimal!
It is up to the you to experiment with sugain to find the optimal gaining. It
may be that you want to run sugain separately with

131

132

$ sugain < shot.ep=200.su tpow=2 gpow=.5 qclip=.95 | suxwigb

and try changing the values of tpow, gpow, and qclip to see the effects of varying these
parameters.

Try to find an optimal setting for the panel. One way of testing your choice is to view
your data with suxgraph

$ sugain < shot.ep=200.su tpow=1.0 | suxgraph

$ sugain < shot.ep=200.su tpow=1.5 | suxgraph

$ sugain < shot.ep=200.su tpow=2.0 | suxgraph

$ sugain < shot.ep=200.su tpow=2.5 | suxgraph

$ sugain < shot.ep=200.su tpow=1 gpow=.5 | suxgraph

$ sugain < shot.ep=200.su tpow=1.5 gpow=.5 | suxgraph

$ sugain < shot.ep=200.su tpow=2 gpow=.5 | suxgraph

$ sugain < shot.ep=200.su tpow=1 gpow=.5 qclip=.99 | suxgraph
$ sugain < shot.ep=200.su tpow=1 gpow=.5 qclip=.99

| suxgraph labell="time (s)" label2="amplitude"

. and so forth

When we plot our data in this fashion, with suxgraph we are overlaying all of the
traces in the gather. The resulting plot shows a crude estimate of the “envelope” of the
waves in the gather by plotting all of the traces on top of one another. The envelope
is a mathematical surface containing the amplitudes but ignoring the oscillation. If we
are successful in removing the decay in amplitude with time, then the amplitude of the
envelope will be more or less constant with time.

The idea is to see which combination of the parameters corrects the geometrical
spreading and attenuative decay with time so that the amplitudes in the trace are roughly
the same for most of the length of the trace. If there are noise spikes or other over
corrected spike events, we use the qclip= to suppress those.

Note that you probably will not need to set perc= on the resulting image if the
gaining is correct.

9.5.3 Statistical gaining

Another commonly used method is automatic gain control (AGC). The notion of having
some automatic or programmed amplification factor dates from the days of analog record-
ing. Instruments have a maximum range of amplitudes that they can record, known as
the dynamic range of the instrument. It was common that the dynamic range of seismic
recording instruments could not accomodate the full range of seismic amplitudes. Adjust
the instrument so that it could record all of the early larger amplitudes without clipping,
and the smaller and later amplitudes would be lost. Set the instrument for the smaller
amplitudes, and the recording system would be overwhelmed by the larger amplitudes at
the earlier times in the data. The solution was to use a different gains in differing time
windows in the data.

132

133

a) offset (meters) x104 b) offset (meters) x104
1.130 1.132 1.134 1.136 1.138 1'1740 1.130 1.1‘32 1.134 1.136 1.]738 1.1740
iR
1 i 1 il
24 24 mm
z 2
o 34 o 34
£ £
4 4
54 54
Shot at ep=200, no gain applied Shot at ep=200, tpow=1
offset (meters) x104 d offset (meters) x104
C B 1.]730 1.132 1.]734 1.136 1.]‘.38 1.]740 1.1730 1.]732 1.]734 1.1‘36 1.]738 1.1740
8 i
21 S
L ”2‘:‘\\\\
i
O)
o 34)
£ £
4<
54

Shot at ep=200, tpow=2 Shot at ep=200, jon=1

Figure 9.3: Gaining tests a) no gain applied, b) tpow=1 ¢) tpow=2, d) jon=1. Note
that in the text we often use jon=1 because it is convenient, not because it is optimal.

It is up to you to find better values of the gaining parameters. Once you have found
those, you should continue using those.

133

134

AGC takes the rms amplitude of a seismic trace in a succession of windows on each
seismic trace, sums over the RMS value of trace amplitude for each window, and normal-
izes the data within the respective window the by dividing by the sum.

AGC is roughly data driven, but it is somewhat dangerous to use, in that the AGC
function can lose small or large amplitudes, and can introduce artifacts that have more
to do with the window size you use, and less with the real amplitude decay in the data.

There are varying opinions as when to and when not to use AGC.

9.5.4 Model based divergence correction

There is a more sophisticated approach to gaining data, which is to model the actual
geometrical spreading amplitudes by solving the wave equation for the amplitudes using
a velocity model, and then normalizing the data based on these calculated amplitude
values.

In SU the programs

$ sudivcor
$ sudipdivcor

In modern migration programs, it may be that we don’t want to gain the data, but
that the gaining is part of the inverse process that is being applied to the data. The
correction for geometrical spreading then, is built in to the migration process.

9.6 Getting to know our data - Different Sorting
Geometries

We need not live with our data in the form of shot gathers. By now the reader is aware
of the CMP-NMO-Stack procedure. The data are recorded as shot gathers, and are
resorted to CMP gathers. We may sort data in terms of offset to make common offset
gathers], or by receivers to make receiver gathers or by any other parameter that we
might want.

9.6.1 Lab Activity #13 Common-offset gathers

In the early days of seismic prospecting, it was not unusual for surveys to be conducted
of a source receiver geometry consisting of single shot-geophone pairs, collected at a
common (constant) offset between source and receiver. This natural because common-
offset gathers provide data that kind of look like an image of the subsurface—the data
1mage discussed in earlier chapters.

We view common-offset gathers today as an important data sorting geometry. From
the “Notes” file, we see that the minimum offset in the data is -262 m and the maximum
offset is -3237 m. We can save 3 common offset sections via

134

135

$ suwind < seismic.su key=offset
min=-262 max=-262 | sugain jon=1
> gain. jon=1.o0ffset=-262.s5u

$ suwind < seismic.su key=offset
min=-1012 max=-1012 | sugain jon=1
> gain. jon=1.offset=-1012.su

$ suwind < seismic.su key=offset
min=-3237 max=-3237 | sugain jon=1
> gain. jon=1.offset=-3237.su

Note that we have used jon=1 for convenience. You should use your own values of
tpow=, gpow=, and qclip=. View and compare these respective near, intermediate,
and far offset sections. Note the presence of multiples, and the time resolution on each
section as well as the time of the first arrival representing the water bottom. Indeed,
some operations such as prestack Stolt migration (sustolt and FK and TX Dip moveout
(sudmofk and sudmotx require that the input data be resorted into common-offset
gathers. This is done in SU via:

susort offset gx < seismic.su > seismic.co.su
sugain jon=1 < seismic.co.su > gain.jon=1.co.su

Again, the choice of jon=1 for the gaining is used here for convenience. You should use
your own values of tpow=, gpow, and qclip instead.

File naming convention

Note that the file names are chosen to reflect the processing steps applied to the data in
the file gain.jon=1.co.su indicates that the file contains “common offset gathers that
have been gained with parameter jon=1. The convention is not unique but is convenient
as it is easy to forget what processes have been applied to a file.

9.6.2 Lab Activity #14 CMP (CDP) Gathers

In 1950 geophysicist Harry Mayne patented the Common Depth Point Stacking method
of seismic data enhancement. The idea is simple, sort the data into gathers whose source
and receiver geometry all have the same midpoint in each gather. Correct for the normal
moveout (NMO) and sum (stack). The result should be less noisy equivalent zero-offset
trace. To sort the data, we use susort, a cleverly written program that makes use of the
powerful sorting capability built into the Unix operating system.

9.6.3 Sort and gain

Rather than make a bunch of intermediate temporary files, we run the process of gaining
and sorting successively in a pipe. Our processing flow for gaining the full dataset is

135

136

midpoint (meters) x104
0.2 0.4 0.6 0.8 1.0 1.2

midpoint (meters)
0.4 0.6 0.8

o b)

common offset=-262 meters common offset=-1012 meters

C) midpoint (meters) x104
0 0.2 0.4 0.6 0.8 1.0 1.2

time (s)

common offset=-3237 meters

Figure 9.4: Common Offset Sections a) offset=-262 meters. b) offset=-1012 meters. c)
offset=-3237 meters. Gaining is done via ... —sugain jon=1 — ...
for convenience. A better gaining of the data is possible.

136

137

$ susort cdp offset < seismic.su > seis.cdp.su
$ sugain jon=1 < seis.cdp.su > gain.jon=1.cdp.su

though here jon=1 should be replaced with the best values for the gaining parameters
that you can find.

File naming convention

Note again that the file names are chosen to reflect the processing steps applied to the
data in the file gain.jon=1.cdp.su indicates that the file contains “common depthpoint
gathers that have been gained with parameter jon=1." The convention is not unique
but is convenient as it is easy to forget what processes have been applied to a given data
file.

If you are experimenting with gains, sort first, because this is a much more expensive
operation

$ susort cdp offset < seismic.su > seismic.cdp.su
and then do the gain on the sorted data seismic.cdp.su.
$ sugain YOUR GAIN PARAMETERS HERE < seismic.cdp.su > gain.PARAMETERS.cdp.su

You will note that we always sort from file to file. (We have found that some systems
the sorting will fail if susort is used with a pipe —.) Again note the naming convention.

9.6.4 Viewing the headers

We now have the data gained, and sorted into CMP gathers. (We use the old term
“CDP” here because this term is the one SU uses to designate the CMP header field in
the SEG Y header.)

As before, we can view some header fields in the data

$ sugethw < gain.jon=1.cdp.su sx gx offset ep cdp | more

5x=3237 gx=0 offset=-3237 ep=101 cdp=1
sx=3237 gx=25 offset=-3212 ep=101 cdp=2
sx=3262 gx=25 offset=-3237 ep=102 cdp=3
sx=3237 gx=50 offset=-3187 ep=101 cdp=3
8x=3262 gx=50 offset=-3212 ep=102 cdp=4
sx=3237 gx=75 offset=-3162 ep=101 cdp=4
sx=3287 gx=50 offset=-3237 ep=103 cdp=5

137

138

offset (meters)
-SQOO -ZQOO -1q00

500+

o 1000+

cd

1500+

2000+

Figure 9.5: A stacking chart is merely a plot of the header CDP field versus the offset
field. Note white stripes indicating missing shots.

138

sx=3262
sx=3237
sx=3287
sx=3262

sx=3237
skipping

5x=3637
sx=3612
sx=3587
sx=3562
sx=3537
sx=3512
sx=3487
sx=3462
sx=3437
sx=3412

sx=3387

gx=75
gx=100
gx=75
gx=100

gx=125

gx=825
gx=850
gx=875
gx=900
gx=92b
gx=950
gx=975
gx=1000
gx=1025
gx=1050

gx=1075

offset=-3187

offset=-3137

offset=-3212

offset=-3162

offset=-3112

offset=-2812

offset=-2762

offset=-2712

offset=-2662

offset=-2612

offset=-2562

offset=-2512

offset=-2462

offset=-2412

offset=-2362

offset=-2312

ep=102
ep=101
ep=103
ep=102

ep=101

ep=117
ep=116
ep=115
ep=114
ep=113
ep=112
ep=111
ep=110
ep=109
ep=108

ep=107

cdp=5
cdp=5
cdp=6
cdp=6

cdp=6

cdp=50
cdp=50
cdp=50
cdp=50
cdp=50
cdp=50
cdp=50
cdp=50
cdp=50
cdp=50

cdp=50

139

We notice a few characteristics of the data from the header fields. First, it seems that
the cdp field is changing rapidly, but eventually, we see that we have more traces with
the same cdp value. What is happening is that the data do not have full fold on the
beginning of the dataset. We eventually have enough fold to have full coverage in CMP

sx=6037

sx=6012

gx=3800

gx=3825

offset=-2237

offset=-2187

139

ep=213

ep=212

cdp=265

cdp=265

140

sx=5987 gx=3850 offset=-2137 ep=211 cdp=265
sx=b5962 gx=3875 offset=-2087 ep=210 cdp=265
sx=b937 gx=3900 offset=-2037 ep=209 cdp=265
sx=5912 gx=3925 offset=-1987 ep=208 cdp=265
sx=5887 gx=3950 offset=-1937 ep=207 cdp=265

9.6.5 Stacking Chart

As we did in Section 9.4.2 we can use suchart to view the header fields graphically

suchart < seismic.su keyl=cdp key2=offset |
xgraph n=120120 linewidth=0
labell="cdp" label2="offset" marksize=2 mark=8

This is effectively a stacking chart, in that it shows the available geophone positions for
each CMP. When data are stacked, they are summed along lines of constant CMP on
this chart.

If we zoom in on this plot, then missing data becomes apparent as gaps in the plot of
header values. The missing shots are distributed over several CMPs and thus the effect
of the missing data is minimized, but not eliminated.

We do not have full fold on the 120 CMPs on the ends of the data. but, you can see
that on low CDP number end of the plot, it is mainly far offset data that are stacked,
whereas on the high CMP number side of the data it is near offset data that are stacked.
This accounts for the strange appearance of the edges of the data that we see in stacked
sections.

9.6.6 Capturing a Single CMP gather

Around cdp=265 we are near the ep=200 portion of the data. We can capture this
CMP gather with suwind

$ suwind < gain.jon=1.cdp.su key=cdp
count=120 min=265 max=265 > gain.jon=1.cdp=265.su

which may be viewed as wiggle traces
$ suxwigb < gain.jon=1.cdp=265.su

For a better view, we may plot the wiggle traces in true offset, reading the offset from
the header field

$ suxwigb < gain.jon=1.cdp=265.su key=offset &

revealing that there are missing traces due to the missing shots in the data.

140

141

offset (meters)

-2000

-1000

-3000

L ri1mn
A debduebt
-k ot AT
Tha AT
N H

TF1i
TR TE T i
SER b T TR T
:_:__.ﬂ..h_f.:__:\,_ﬂ " _“_r
ifHY

CDP 265

CMP 265 of the gained data.

Figure 9.6

141

142

midpoint (meters) x104 midpoint (meters) x104

1.0 15 10 15 2.0

time (s)
time (s)
w

————

Stack (vnmo=1500)

Raw Stack (No NMO) Ccv

midpoint (meters) x104 midpoint (meters) x104
0.5 1.0 15 2.0 25 0.5 1.0 1.5 2.0 2.5

time (s)
w
time (s)
w

Figure 9.7: a) “Raw” stack: no NMO correction, b) CV Stack vhmo=1500, c¢) CV Stack
vnmo=2300 d) Brute Stack vnmo=1500,1800,2300 tnmo=0.0,1.0,3.0

142

143

9.7 Quality control through raw, CV, and brute
stacks

The term “quality control” or QC is the industry name for what we have been calling
“getting to know your data.” The most widely used method of QC is to perform a serice
of C'V stacks and maybe a brute stack of the data.

9.7.1 Lab Activity #15 - “Raw” Stacks, CV Stacks, and
Brute Stacks

Another common “quick look” technique is the construction of brute stacks. As the name
suggests, a brute stack is a stack of CMP data with only an approximate NMO correction.
Typically some form of brute stack is used as a field quality control technique.

A Raw stack

For example, we may use sustack to stack the CMP gathers with no NMO correction.
Because industry uses the term “brute stack” with the assumption that some rough NMO
correction as a function of depth is applied, we use the term “raw stack” for the case of
a no-NMO stack of the data. For example try

$ sustack < gain.jon=1.cdp.su | suximage perc=99 title="Raw Stack" &

This will take a few seconds to come up on the screen. Remarkably, we can see the hint
of our structure even in a stack with no NMO correction. So, yes, we have data.

Constant Velocity (CV) stacks: guessed stacking velocities

We can answer other questions, for example we might want to know more about the
multiples? We can NMO correct the data to the water speed of 1500 m/s to view the
multiples type

$ sunmo vnmo=1500 < gain.jon=1.cdp.su |
sustack | suximage perc=99 title="CV stack vnmo=1500" &

We look for repetition in the data. Multiples consist not only of bounces from the first
arrival in the water column, but multiple bounces of many arrivals. The water surface is a
big mirror, and not only are there multiple reverberations of the first arrival, but multiple
reverberations of all other arrivals, such that potentially the whole seismic section is
repeated, with multiples of early arrivals overwriting the later arrivals. This isn’t simply
a an addition of multiples to the data, but rather multiples become a secondary source,
and the multiples are convolved with the data.

If we choose a number that corresponds to the moveout time for later arrivals, for ex-
ample vinmo=2300, this will will tend to enhance later reflections, though it is apparent
that reverberations dominate the image.

143

144

$ sunmo vnmo=2300 < gain.jon=1.cdp.su |
sustack | suximage perc=99 title="CV stack vnmo=2300 "&

Putting it together—a Brute Stack

Suppose that we guess a profile with NMO corrected using vinmo=1500,1800,2300 set at
the at the times tnmo=0.0,1.0,2.0.

$ sunmo vnmo=1500,1800,2300 tnmo=0.0,1.0,2.0 < gain.jon=1.cdp.su |
sustack | suximage perc=99 title="Brute Stack vnmo=1500,1800,2300 &

This choice of velocities focuses both the water bottom and shallow section, as well as
the strong reflector that starts at 2.0 seconds on the left of the section. But note, these
values are really just guesses. Even with a more realistic velocity profile it is clear that
we need to both suppress multiples, and perform velocity analysis so that we can get a
better stack.

9.8 Homework: #5 Due Thursday 1 Oct 2015 and
Tues 6 Oct 2015 prior to 9:00AM

Repeat the gaining and raw and brute stack operations of the previous sections (don’t
show the "raw stack”), experimenting with sugain and the values of tpow=, gpow=,
and qclip= to find gaining parameters that you believe work better to balance the
amplitudes of the data in time. Replace the jon=1 in the examples below with your
parameters.

To repeat the brute stacking operations put in the additional windowing step

| suwind key=offset min=-3237 max=-1000 |
to pass only the far-offset data. For example

$ sunmo vnmo=1500 < gain.jon=1.cdp.su |
suwind key=offset min=-3237 max=-1000 |
sustack > stack.far.gain.jon=1.cdp.su

Similarly, stack only the near-offset data, for example

$ sunmo vnmo=1500 < gain.jon=1.cdp.su |
suwind key=offset min=-1000 max=-262 |
sustack > stack.near.gain.jon=1.cdp.su

and compare these results. Perform a similar test for each of the NMO velocity cases in
the previous section. Do we really want to include the near offset traces when we stack?
What is on these traces and why does nmo=1500 accentuate this part of the dataset?

144

145

9.8.1 Are we done with gaining?

The issue of amplitude corrections are complicated. The example in the Homework
assignment above is really a preliminary operation. We can see this by asking what
processes should still be done to the data, and in fact, some of these operations should
be done before gaining.

Muting

Some seismic arrivals should be removed before attempting to gain the data. Muting
out direct arrival energy is one such item. Muting means to zero out the data in specific
ranges of space and time. The SU program

$ sumute

allows the muting operation to be performed.

What do we mute? We mute direct arrivals and the place where direct arrivals
interact with reflections and refracted arrivals at the earliest times of the data. There is
also something called a stretch mute which is the removal of a low frequency artifact of
the NMO correction that is viewed on NMO gathers.

Wavelet shaping

One of the first things that we do to data is to correct for the shape of the wavelet. This
is done by deconvolution. There are a number of tools that we may use to improve the
waveform that involve methods with a variety of assumptions. We discuss some of these
in depth in Chapter 11.

Multiple suppression

As our brute stacks show (particularly stacks with vinmo=1500 that accentuates energy
traveling at or near the water speed), our data are dominated by water bottom and peg
leg multiples. We need to do gaining to make the amplitudes of the multiples more
uniform in order to remove them, but then we must re-gain the data.

Our methods of multiple suppression include predictive deconvolution and filtering in
the tau-p (also known as the Radon or slant stack domain. These are topics discussed
in later chapters. In the industry, a method called surface related multiple elimination
(SRME) is very popular. This method models multiples as the autoconvolution of pri-
mary reflections, permitting the multiples to be modeled and subtracted out, leaving the
data.

Clearly we are not finished, and in fact, we have not really gotten very far yet.

9.9 Concluding Remarks

After Harry Mayne patented the CDP stacking method in 1950 as part of his work at the
Petty Geophysical Engineering Company, oil companies were required to pay a licensing

145

146

fee to Petty to use the technique commercially. The technique of sorting, NMO correcting,
and stacking the data was done with the data in analog form. This required highly
specialized and multi-milllion dollar magnetic drums and magnetic tape devices. Such
operations as NMO and STACK were performed using this unwieldy and tempermental
equipment. The ease and simplicity of applying these operations on digital data, as we
do in lab assignments, was years away. These operations were costly and technically
difficult in the pre-digital era, yet even with only 6 fold stacking, the improvements in
data quality were worth it.

Rather than pay Petty the licensing fee, some companies instead did the common
depth point sorting part but did not do the stack. Instead of stacking the data, some
companies developed high-density plotters such that the traces were effectively plotted
one on top of the other producing a “fat” trace, rather than a stacked trace. (We are
talking 6 fold data, primarily, so there were a maximum of six traces plotted, side by side,
very closely.) Thus, Harry Mayne’s patent encouraged the development of high-resolution
plotting equipment.

Prior to the mid-1970s, deconvolution followed by the CDP-NMO-STACK sequence
was the majority of seismic data processing. Migration was done only on select sections,
or not at all. Seismic interpreters extracted dip and depth information from these stacked
data.

146

Chapter 10

Velocity Analysis - Preview of
Semblance and noise suppression

Here, we do a dry run of velocity analysis on a single CMP gather and then do a more
“production level” approach to velocity analysis in the next chapter. The method of
velocity analysis that we will use is called NMO Semblance analysis. The idea is to
apply the normal moveout correction over a spectrum of velocities and pick the velocities
that NMO correct the data to be most coherent. The coherency measurement is an
attribute called semblance.

Semblance is defined by the following quotient:

{]Z_? q(t,j)]

s(t) =
{Z nq?(t,j)]

where s(t) is the semblance trace and ¢(t, j) is the j-th sample on the on the input seismic
trace. In other words, semblance is the square of the sum divided by n times the sum
of the squares of the values on a seismic trace. It should mentioned that there is more
than one measurement of coherency that geophysicists employ, but semblance is the most
commonly used measure.

Let’s capture and gain CDP=265, if you have not done so already. Here I will use
jon=1 but if you have your own gained version, use that instead

$ susort cdp offset < seismic.su > seismic.cdp.su
$ sugain jon=1 < seismic.cdp.su > gain.jon=1.cdp.su

$ suwind key=cdp min=265 max=265 < gain.jon=1.cdp.su > gain.jon=1.cdp=265.

Now we are ready to try doing some velocity analysis using the NMO-semblance
method. The program that does this is suvelan

$ suvelan

147

su

148

2000 2500 3000 3500

1500
o

1

0.4
2

0.3
0.2 3

0.1
4

0

Figure 10.1: Semblance plot of CDP 265. The white dashed line indicates a possible
location for the NMO velocity curve. Water-bottom multiples are seen on the left side of
the plot. Multiples of strong reflectors shadow the brightest arrivals on the NMO velocity
curve.

148

149

offset (meters)
-3000 -2000 -1000

L ETOTE

[T
CMP 265 with vnmo=1500

Figure 10.2: CMP 265 NMO corrected with vinmo=1500. Arrivals that we want to keep
curve up, wheres multiple energy is horizontal, or curves down.

Here we start with a velocity of fv=1450 m/s, try different NMO velocities in incre-
ments dv=15 m/s, and choose nv=150 velocities

$ suvelan nv=150 fv=1450 dv=15 < gain.jon=1.cdp=265.su |
suximage d2=15 £2=1450 verbose=1 cmap=hsv2 legend=1 bclip=.5 &

Note that the plotting program is chosen to give a red on blue color map, and the value
of belip=.5 is chosen to boost the amplitudes on the semblance map.

Running this command on gain.jon=1.cdp=265.su we can see evidence of multi-
ples, in that there are repetitions that have something to do with the speed of sound
in water. These need to be suppressed before we can proceed further. We see that the
multiples have slow moveouts. One set of multiples have a velocity that is approximately
the water speed. Another set “shadows” strong reflectors in the subsurface, also tending
to the water speed with each repetition.

149

150

10.0.1 Creative use of NMO and Inverse NMO

In the sections that follow, we will find that the process of NMO correction may be used
as a tool to change the slope of our data. We also will make use of inverse NMO. 1t is
possible to make an approximate inverse of the normal moveout correction.

Thus, we will find that we will apply a sequence of forward NMO followed by a
moveout based filtering technique, followed by an inverse NMO. It is important for the
reader to realize that these usages are not the application of NMO for the final flattening
of the data. Even though sunmo may appear as part of the processing sequence, the
end result is that there is no net NMO correction applied to the data.

10.1 The Radon or (7 - p) Transform

We may exploit the differential moveout in the data between multiples and reflectors
by applying an NMO correction to flatten arrivals traveling at the water speed. The
Radon or 7 - p (7-p) transform maps the data into the traveltime-slowness domain. The
“slowness” may be thought of as the slope of the data in time and offset. In other words
it is a quantity with units of time/distance. Speed is distance/time hence the origin of
the term “slowness.”

The Radon transform operates by considering each traveltime depth in a seismic
dataset and by scanning over the data along curves of different initial slopes or slownesses,
referenced between the right and left sides of the data.

Consider for example data made by running suplane in the following:

$ suplane ntr=120 nt=256 dt=.004 | sushw key=offset a=0
b=10 | sufilter £=0,5,50,60 > suplanedata.su
$ suximage < suplanedata.su title="suplane data"
key=offset labell="time (s)" label2="offset (meters)"

where we have 3 intersecting linear arrivals. We would like to separate the data in such
a way that will allow us to remove one of the dipping arrivals. We could use dip or
slope filtering in the (f, k) domain to do this. In this case, filtering in the (f, k) domain
might be the best thing, owing to the fact that these are straight lines. However, there is
another method called the Radon or 7 -p transform that will do a better job of separating
arrivals, particularly if the arrivals are curves with different curvature, such as we see
with arrivals having differing moveout.

The Radon transform operates by summing the data over curves that are drawn from
time at an intercept offset (interoff) which is usually usually either 0 or the smallest
offset in the data. The curves are referenced an offset (offref that is usually taken as
the maximum offset in the data. The data are summed over a fan of these curves taken
with differing initial slope and the result plotted as a function of the reference time (the
7) and slope (the p) of each curve.

For example, transforming the suplanedata.su made above into the Radon domain
is done with suradon

150

151

a) offset (meters) p (slope index)
6‘0 8‘0 0

20 40

100 120)3000 -500

0

0.24 0.2

0.84 0.8

1.04 1.0
Suplane Data Suplane data---Radon domain

Figure 10.3: a) Suplane data b) its Radon transform. Note that a linear Radon transform
has isolated the three dipping lines as three points in the (7-p) domain. Note that the
fact that these lines terminate sharply causes 4 tails on each point in the Radon domain.

$ suradon < suplanedata.su igopt=3 ninterp=4 choose=0 depthref=1000
interoff=0 offref=1190 pmin=-1000 pmax=1000 > radon.su
$ suximage < radon.su labell="tau (s)" label2="slope index"
title="suplane data Radon transformed"

Here it should be noted that suradon is a complicated program with a lot of options,
so we will approach the problem of using this program cautiously. In this case we use
choose=0 to get a forward Radon transform of the data, igopt=3 to select a linear
Radon transform, meaning that the curves that are summed over are straight lines. The
rest of the values make sense if we do

$ surange < suplanedata.su
120 traces:

tracl 1 120 (1 - 120)
tracr 1 120 (1 - 120)
offset 0 1190 (0 - 1190)
ns 256

dt 4000

which shows that the offset ranges between 0 and 1190 meters. The pmin and pmax
parameters must be chosen to be large enough to encompass all of the slopes (as measured
by maximum times) to be seen.

Figure 10.4 shows the result of performing the Radon transform on the data from
suplane. Because the Radon transform is invertible, one or more of the dipping lines, now
represented as points, can be surgically removed, and the inverse transform performed
to yield filtered data with one or more of the planes removed. This is different from dip
filtering in that there is no frequency domain band-limiting effect.

151

152

trace number

60 100 120

20 40 80

0.2

0.4

time (s)

0.6

0.8

1.0

Steeply dipping plane removed

Figure 10.4: The suplane test pattern data with the steepest dipping arrival surgically
removed in the Radon domain.

152

153

Suppose we had applied NMO to the data, so that the most steeply dipping items
were the items that we wanted to remove. These steeply dipping arrivals correspond to
the arrivals near p = 1000 in the Radon transformed plot. We could perform a Radon
transform, surgically remove this arrival and then perform an inverse Radon transform
to reconstruct the data. Fortunately, the suradon program also works as a filter in the
Radon domain. If we want to get rid of everything for p > 600 then we need merely run
the program again, with the choose option. Instead of a Radon transformed dataset, the
output this time is the data panel in the time domain with desired items removed. Setting
the values of pmula=600 and pmulb=600 defines a vertical line in the Radon domain
at p = 600. The suradon program applies a smooth filter to remove contributions to
the right of a vertical line to the right of this line

$ suradon < suplanedata.su igopt=3 ninterp=4 choose=1 depthref=1000
pmula=600 pmulb=600
interoff=0 offref=1190 pmin=-1000 pmax=1000 > filtered.su
$ suximage < filtered.su labell="tau (s)" label2="slope index"
title="suplane data filtered in Radon domain"

10.1.1 How filtering in the Radon domain differs from f — &
filtering

But, so what? We suppressed a dipping arrival. Couldn’t we have done that with f — &
filtering? For example, the program sudipfilt could be used suppress the same arrival.
The Radon transform need not be applied only to straight lines, which represent a range
of dips in the data. Thus, it is possible to perform the Radon transform by passing more
general curves through the data, such as the curves we obtain by performing the NMO
correction on CMP gathers. We can attack the differing moveouts between reflections
and multiples.

10.1.2 Semblance and Radon for a CDP gather

Our principal sources of multiples come from two sources. The first are simple water-
bottom multiples, which are reverberations in the water layer. The second are called peg-
leg multiples (an allusion to the ray path in the water layer resembling a crude artificial
leg) which are reflected arrivals that have one or more additional bounces in the water
layer.

A crude simulation of our CDP 265 may be made with the MakeFake shell script

$ cd /gpfc/yourusername

$ mkdir Temp5 (if you have not done so already)
$ cp /data/cwpscratch/Data5/MakeFake /gpfc/yourusername/Temp5
$ more MakeFake

$ MakeFake

$ 1s fakex

153

154

offset (m)
2000

£ i G
Synthetic data + w.b. + pegleg multples

Figure 10.5: a) Synthetic data similar to CDP=265. b) Synthetic data plus simulated
water-bottom multiples. ¢) Synthetic data plus water-bottom multiples, plus select pegleg
multiples.

154

155

velocity (m/s)
2500 3000 3500

a velocity (m/s) b
LJ800 2000 2500 3000 3500 5002000

Semblance plot (no multiples) Semblance plot data + w.b multiples

velocity (m/s)
2500 3000 3500

C) 1500 2000
0

Semb. plot data + w.b + pegleg multiples

Figure 10.6: a) Synthetic data similar to CDP=265. b) Synthetic data plus simulated
water-bottom multiples. ¢) Synthetic data plus water-bottom multiples, plus select pegleg
multiples.

155

156

p (intercept time in ms)
000 0 10

p (intercept time in ms)
000 [1 00

000

-1

Synthetic data in the tau-p domain Synthetic data + w.b. multiples (tau-p domain)

p (intercept time in ms)
-g -1000 0 1000

Synthetic data + w.b. + pegleg multiples (tau-p domz

Figure 10.7: a) Synthetic data in the Radon domain b) Synthetic data plus simulated
water-bottom multiples in the Radon domain. ¢) Synthetic data plus water-bottom
multiples, plus select pegleg multiples in the Radon domain.

156

157

The files that are generated all begin with the word “fake”.

$ suxwigb < fake.su perc=99 title="fake data" &
$ suxwigb < faketwater.su perc=99 title="fake + water bottom multiples" &
$ suxwigb < faketwater+pegleg.su perc=99

title="fake + water + pegleg multiples" &

Plots similar to these are shown in Figure 10.5a), b), and c).

Figure 10.5a) shows a synthetic data panel similar to CDP 265 in the Viking Graben
data without multiples. The second panel Figure 10.5b) shows the same data contami-
nated with simulated water-bottom multiples. Finally, simulated water-bottom multiples
plus pegleg multiples from select events are shown in Figure 10.5¢) .

We can view semblance plots of each simulated datastes via

$ suvelan nv=150 fv=1450 dv=15 < fake.su |
suximage d2=15 £2=1450 verbose=1 title="fake"
cmap=hsv2 legend=1 bclip=.5 &

$ suvelan nv=150 fv=1450 dv=15 < faket+water.su |
suximage d2=15 f2=1450 verbose=1 title="fake+water"
cmap=hsv2 legend=1 bclip=.5 &

$ suvelan nv=150 fv=1450 dv=15 < faket+water+pegleg.su |
suximage d2=15 £2=1450 verbose=1 title="faket+water+pegleg"
cmap=hsv2 legend=1 bclip=.5 &

Plots like these are shown in Figure 10.6a), b), c) .

In Figure 10.6 a) we see the velocity analysis semblance plot for the synthetic data
without multiples. This would be the “perfect” semblance plot. In Figure 10.6 b) we
see the semblance plot for these same synthetic data contaminated with water-bottom
multiples, which are the arrivals at 1500m/s, the speed of sound in water, arriving at
intervals 0.5s reflecting the two way traveltime in the water layer. The pegleg multiples
are added for select events and the semblance is plotted in Figure 10.6 ¢). The pegleg
multiples are reverberations spaced at 0.5s, but with decreasing velocity. As we can see,
as the pegleg multiples bounce repetitively in the water layer, their velocity approaches
the water speed of 1500m/s.

We may generate corresponding Radon (i.e.7-p domain) plots of these data via

$ sunmo vnmo=1500 < fake.su |
suradon offref=-3237 interoff=-262 igopt=2 choose=0
pmin=-2000 pmax=2000 dp=8 depthref=1000 |
suximage perc=99 title="fake"
labell="tau" label2="p"

$ sunmo vnmo=1500 < fake+water.su |

157

158

suradon offref=-3237 interoff=-262 igopt=2 choose=0
pmin=-2000 pmax=2000 dp=8 depthref=1000 |
suximage perc=99 title="faketwater"
labell="tau" label2="p"

$ sunmo vnmo=1500 < fake+water+pegleg.su |
suradon offref=-3237 interoff=-262 igopt=2 choose=0
pmin=-2000 pmax=2000 dp=8 depthref=1000 |
suximage perc=99 title="faket+water+pegleg"
labell="tau" label2="p"

Finally in Figure 10.7 we see the corresponding panels in the Radon (7-p or slant stack)
domain. The data have been NMO corrected to flatten arrivals traveling at the water
speed. Here everything to the left of p=0 is data that we want to keep. Water-bottom
multiples are flattened to p=0 and pegleg multiples fall somewhere between the data
we want to keep and the water-bottom multiples. A more sophisticated of the NMO
correction can be used as a preprocess to make the parts of the data we want to keep fall
to the left of p=0, while moving items we want to remove to the right of p=0.

10.2 Multiple suppression - Lab Activity #17
Radon transform

As we may see in the synthetics in Figure 10.5, multiples tend to have steeper moveouts,
which is to say that the multiple energy takes longer time to travel the same distance
because a leg of propagation has occurred in the water layer. If we NMO-correct our
data to the water speed, or maybe a speed that is slightly higher, this will tend to flatten
many of the multiples, but cause events that we want to save to curve up. We perform
the NMO correction with sunmo

$ sunmo vnmo=1500 < gain.jon=1.cdp=265.su | suxwigb

You may find that making your wiggle trace plot tall and narrow accentuates the
different moveouts. Anything that travels with the speed of water waves is flattened
with this choice of NMO velocity. Arrivals that have the moveout of reflections are now
curving upward. Anything horizontal, near horizontal, or curving down is something that
we want to suppress. We save a copy of this water-speed NMO corrected data as

$ sunmo vnmo=1500 < gain.jon=1.cdp=265.su > junk.su
We may now apply suradon to transform the data into 7-p domain

$ suradon < junk.su offref=-3237 interoff=-262 igopt=2 choose=0
pmin=-2000 pmax=2000 dp=8 depthref=1000 |
suximage perc=99 labell="tau" label2="p"

158

159

p

-6.500 -1000 -500

CMP 265 in the tau-p domain

Figure 10.8: CMP 265 NMO corrected with vnmo=1500, displayed in the Radon trans-
form (7-p) domain. Compare this figure with Figure 10.2. The repetition indicates
multiples.

159

160

Negative values of p correspond to upward curving events, while p=0 is anything that
is flat. Anything curving down, which is to say, having positive moveout, in other words
arrivals that are slower than the water speed, are to the right. The program suradon is
a sophisticated improvement on the traditional 7-p transform. One improvement is that
the p values are given as times in milliseconds on the data, instead of velocities. Also
there are several choices of Radon transform that the user may apply. Here in igopt=2
mode, it sums over hyperbolae rather than mere lines. The p value, then, is the takeoff
angle of a hyperbola. Exactly matching a hyperbola would tend to make a dot at a
particular 7-p pair on the plot. This is an idealized situation. We don’t have the exact
hyperbolae. We can control the shape of the hyperbolae with the depthref parameter
to some degree.

What we get are two regimes of curving arrivals. When we flatten our data with a
NMO correction, items with positive p are multiples—these we seek to remove. Items
that are flattened or have negative p, are our our data, which we want to keep.

The suradon has a second mode useful as filter for multiple suppression. We may
select choose = 1 to suppress multiples

$ suradon < junk.su offref=-3237 interoff=-262 pmin=-2000 pmax=2000
dp=8 choose=1 igopt=2 pmula=-800 pmulb=47 depthref=1000 |
sunmo vnmo=1500 invert=1 > junkl.su

The values of pmula=-800 and pmulb=47 define the beginning and ending p values
of the location of the multiples. The program smoothly suppresses items to the right of
the line defined by 7 = 6.0 and p = —800 and 7 = 0 and p = 47.

The invert=1 causes sunmo to apply “inverse NMO” which is an approximate
inversion of the NMO correction to the waterspeed, back to the original data. Some
muting occurs (in the right place—a lucky accident) as a result of the inverse NMO.

To see what we obtain from the application of this filter

suxwigb < junkl.su title="data after multiple suppression" &
To see what we removed from the data, we run suradon in the choose=2 mode,

$ suradon < junk.su offref=-3237 interoff=-262 pmin=-2000 pmax=2000
dp=8 choose=2 igopt=2 pmula=-800 pmulb=47 depthref=1000 |
sunmo vnmo=1500 invert=1 > junkl.su

which gives us an estimate of what was suppressed in the data,
suxwigb < junk2.su title="multiples that were suppressed" &

A small shell script called “Radon.test” located in /data/cwpscratch/Datab/ puts all of
these together

#! /bin/sh

160

161

vnmo=
tnmo=
data=
pmula=0
pmulb=0

view nmo corrected data in the Radon domain
sunmo vnmo=$vnmo tnmo=$tnmo < $data |

suradon offref=-3237 interoff=-262 pmin=-2000 \
pmax=2000 dp=16 choose=0 igopt=2 \
depthref=1000 | suximage perc=99 &

nmo->radon-> inverse NMO: for multiple suppression
sunmo vnmo=$vnmo tnmo=$tnmo < $data |

suradon offref=-3237 interoff=-287 pmin=-2000 \
pmax=2000 dp=8 choose=1 igopt=2 \

pmula=$pmula pmulb=$pmulb \

depthref=1000 |

sunmo vnmo=$vnmo tnmo=$tnmo invert=1 > radon.$data

view semblance
suvelan < radon.$data dv=15 fv=1450 nv=200 |
suximage d2=15 £2=1450 cmap=hsv2 bclip=.5 &

exit O

10.2.1 Homework assignment #6, Due Thursday 8 Oct 2015
(before 9:00am) and on Tues 13 Oct 2015

e Use "suwind” to capture a single CDP that is different from cdp=265 that we have
been studying in class:

suwind < gain.YOURPARAMETERS.cdp.su key=cdp
min=NUMBER max=NUMBER > gain.YOURPARAMETERS.cdp=NUMBER.su

(Here for ’NUMBER” is any any CDP number between 300 and 2000). View this
file with suxwigh, examine the headers with surange (You are working with only
one CDP here, remember.)

e Copy the shell script Test.sh to your Tempb directory.
cp /data/cwpscratch/Datab/Test.sh /gpfc/yourusername/Tempb

161

162

Modify this file to use your gained version of cdp NUMBER
gain.YOURPARAMTERS. cdp=NUMBER. su

file you created in step 1. Run the shell script. Try to find better tnmo= and
vnmo= values than the ones that are in the script to suppress the multiples.

e Show suxwigb (or supswigh) plots of the single CDP before and after multiple
suppression, and show the semblance plot of the data after multiple suppression.

Because this is a warmup assignment for more complicated applications later on, here
are a few tips and tricks.

1. Make sure you are working with the shell script Test.sh located in /data/cwpscratch/Datab
not the shell script Radon.test discussed in the previous section. Test.sh has some
tnmo= vnmo= values already set for you, to get you started. Remember that we
are using the NMO operator as a tool to separate the moveouts of arrivals that we
want to get rid of (the multiples) from the arrivals we want to keep (the reflections).

Every application of a forward NMO is followed by an application of filtering in
the radon domain, which in turn, is followed by an application of Inverse NMO to
undo the original NMO.

2. The goal of velocity analysis is to get the ”correct” stacking velocities. In our case,
these values will give us two benefits. We can use these tnmo= and vnmo= for
the preprocess for the radon transform domain filtering, and ultimately we will get
the NMO velocities to stack the data.

3. The idea is to eliminate the multiples by filtering in the radon domain, and then
pick new vnmo= and tnmo= from your semblance plot.

4. How to pick: You can just zoom in on the semblance plot and read values of the
axes. Alternatively, you may pick values by placing the cursor on the place on the
plot that you want to pick. Then type the letter ”s” and the value of a time velocity
pair will be printed in your terminal window. Then edit the shell script to use the
new values and then run Test.sh again.

5. It is helpful to have a wiggle trace plot of your CDP gather on the screen next to
your semblance plot so that you can see what event goes with a given semblance
peak. Is it a multiple or is it a real reflector that is making a given semblance
peak. Update the tnmo= and vnmo= pairs and run Test.sh again to see if the
semblance plot shows fewer multiples. Repeat, until it looks more like a textbook
example of a semblance plot.

6. What to pick: If the NMO velocity is perfect at a particular time, were there is
a reflector, then the semblance plot will have a peak value at that NMO velocity,
and that time.

162

163

7. How to know what values to pick: Imagine the geology. The water speed is 1500
m/s at t=0.0, always. The next peak will be at the top of the unconsolidated
material in the water bottom, it will be about .5 s and will be only slightly higher
than 1500 m/s. We expect that as we go down in depth the velocity will increase
until we are in consolidated material, where it will be higher. Speed generally
increases with depth, though there may be local velocity reductions (hard to see
on semblance). Semblance peaks occur where there are relatively strong reflectors.
Eventually, the velocity will tend to increase slowly. Look in Oz Yilmaz book or in
Hill and Rueger’s notes for an example of ”perfect” semblance plots.

8. What if it doesn’t work? The only thing left to vary is the location of the filter in
the Radon domain. The filter is defined by the values of pmula= and pmulb= in
as used in suradon. The filter is defined by a straight line, with endponts time=0
and the value of pmulb, and time= maximum time on the section and the value of
pmula. In practice we have found that good values of pmulb are between 180 and
240 and good values of pmula are between 5 and 30. Feel free to experiment.

9. Note that the semblance peaks move to the right or the left a bit depending on
where in the radon domain the filter is applied. So, you really need to repick your
velocities after you have changed the filtering.

10.2.2 We are not finished with multiple suppression and
velocity analysis.

You will notice a that on the near offsets, there are just as many multiples as when we
started. This occurs because at near offsets, all arrivals are almost flat, whether they are
once-reflected arrives from beds, or if they are multiples. Differential moveout methods
are less effective at near offsets.

10.3 Muting revisited

If you plot the multiple suppressed gather from the Homework assignment, you will
notice that values have been zeroed for short times and far offsets. Thus, there are some
“time,offset” pairs that are zeroed out by sunmo and are thus missing after the cascade
of processes that finishes with an inverse NMO.

10.3.1 The stretch mute

When we apply the normal moveout (NMO) correction, there is a radical distortion of
the data called the NMO stretch. To remedy the NMO stretch, an editing of the data
called the stretch mute is applied. You have already applied the stretch mute, but you
were unaware of this.

If you look at the self-doc for sunmo

163

164

offset (m)

-2000

-1000

-3000

Iy
— A

#

Ll
iH
yi
kbl Xi]

— | (Y
— e

T ET IR
bl i

[T .L W

5

0

1_ m
i
2

(s) sum

=0,1,2

,1800,2300 tnmo

1500
No Stretch mute applied

cdp 265 vnmo

velocity function

the
0 but with no stretch mute parameter

with
applied. NMO stretch artefacts appear in the long offset, shallow portion of the section.

corrected

265 NMO

CDP
1500,1800,2300 tnmo

10.9:

Figure

0.0,1.0,2

vnmo=

164

165

$ sunmo
SUNMO - NMO for an arbitrary velocity function of time and CDP
sunmo <stdin >stdout [optional parameters]

Optional Parameters:

tnmo=0,... NMO times corresponding to velocities in vnmo
vnmo=1500, ... NMO velocities corresponding to times in tnmo
cdp= CDPs for which vnmo & tnmo are specified (see Notes)
smute=1.5 samples with NMO stretch exceeding smute are zeroed
lmute=25 length (in samples) of linear ramp for stretch mute
sscale=1 =1 to divide output samples by NMO stretch factor
invert=0 =1 to perform (approximate) inverse NMO

upward=0 =1 to scan upward to find first sample to kill

Notes:
For constant-velocity NMO, specify only one vnmo=constant and omit tnmo.

you will note that there are two parameters smute=1.5 and lmute=25 which control
the amount of stretch muting and the tapering of the mute. We may run sumute with the
stretch mute parameter turned off by choosing a large number for the value of smute=

$ sunmo vnmo=1500,1800,2300
tnmo=0.0,1.0,2.0 smute=8 < gain.jon=1.cdp=265.su |...

The result is in Figure 10.9. We can clearly see the NMO stretch phenomenon. The
default values of smute= and Imute= work pretty well for most applications, however
if you see long period artifacts on your stacked section, it is possible that you may need
to adjust the values of the stretch mute. Conversely, we do have the possibility of losing
data if the stretch mute is too agressive. In either case the stretch mute may need to be
adjusted.

10.3.2 Muting specific arrivals.

The term muting simply means zeroing out parts of the data that we don’t want. The
items to mute consist of random noise that may appear on the traces before the onset of
the actual arrivals, direct arrivals from the source that have traveled in the water layer,
refracted arrivals also called head waves from the shallower layers of the water bottom,
and wide angle reflections from the shallow layers of the water bottom that may be seen
at longer offsets. These items are undesirable because they do not fit the traveltime
moveout of reflectors, or do not fit with the theory of seismic reflection that we assume
when migrating the data.

165

166

10.3.3 Lab Activity #16 — muting the data

Muting is a simple process, we define a curve in the data, such that for those times and
positions, all values at earlier time are simply set to zero.

10.3.4 Identifying waves to be muted

On any part of the data where the waterbottom has more or less the same sort, we can
create an average of all shot profiles in that area. In the case of these data, the entire
dataset has a fairly flat waterbottom. We can resort the data so that it is in increasing
offset, with the traces of the same offset side by side

$ susort dt offset < seismic.su > junkl.su

where we have chosen dt as the first parameter because it is a header field that is the
same for every trace. We then can stack the data

$ sustack key=offset < junkl.su > supershot.su

so that each resulting trace is the average of all of the trace at that offset. The effect
is that supershot.su is an average of all of the shot gathers in the data. We may view
the supershot.su by putting some display gain on this with sugain and display with
suxwigb

$ sugain jon=1 < supershot.su | suxwigb key=offset

It is important for picking that suxwigb is run with key=offset so that the horizontal
scale will be in offset.

10.3.5 How to pick mute values.

On the super shot gather, we may pick (time,offset) pairs to supply to sumute. This
may be done by placing the cursor on the desired point, and typing the letter “s”. The
ordered pair of time and offset will be printed on your terminal window.

Once the desired times and offsets are obtained, the entire dataset may be muted via

$ sumute < seismic.su tmute=t1,t2,... =xmute=x1,x2,... \
key=offset > mute.seismic.su

You can make this a bit more automated by doing the picks via following;:
$ suxwigb key=offset perc=99 mpicks=picks.txt < supershot.su &

and as before, pick values by placing the cursor on the desired location on the plot and

typing the letter “s”. When you are finished type “q” and the picks will be written into
the file picks.txt. Now use mkparfile to make a par file for sumute. This is done by

typing

166

167

wide angle
reflections

mute above
this curve

Supershot

Figure 10.10: An average over all of the shots showing direct arrivals, head waves, wide
angle reflections, and a curve along with muting may be applied to eliminate these waves.

mkparfile stringl="tmute" string2="xmute" < picks.txt > mute.par
Then you would do:
$ sumute < seismic.su par=mute.par key=offset > mute.seismic.su

then you proceed with sorting mute.seismic.su into CDP gathers and then multiple
suppressiona and velocity analysis.

10.3.6 The shape of the wavelet

It may have occurred to the reader that we have done nothing to ensure that the waveform
is actually optimal for stacking. Seismic signals are assumed to have what is called the
“minimum phase” property, which is to say that most of the energy is located at the
beginning of the wave form. Manufacturers of marine air guns do their best to fit this
prescription, but there are still issues that make real seismic data deviate from this
assumption.

For air guns, there is a reverberation known as a “bubble pulse” which is caused by
a reverberation of the air bubble generated by the air gun. The second problem with
marine data is known as “ghosting.” Ghosting is caused because there is are reflections
off of the water surface at both the source and the receiver that tend to turn the waveform
into something more like a doublet or triplet. Ghosting is evidenced by a notch in the
spectrum of the seismic data.

167

168

These deviations from perfect minimum phase are handled by deconvolution. Indeed,
we may also use predictive deconvolution to suppress multiples.

10.3.7 Further processing

We may consider processing the full dataset with the shell script Radon.final

#! /bin/sh

input your data sorted in cdps.

susort < data.su cdp offset > data_cdp.su
data=data_cdp.su

radondata=radon. $data

the tnmo= and vnmo= values go in a text file called "radon_nmo_vel.par"
you can use the radon_nmo_vel_x.par file made by Velan.radon here
parfile=radon_nmo_vel.par

interoff=-262
offref=-3237
depthref=1000

do pmin and pmax need to be this big?
pmin=-2000

pmax=2000

dp=8

igopt=2

lenx=7

xopt=1

turn of stretch mute, sometimes suradon fails on muted data
smute=20

The values of pmula and pmulb define the filter in the Radon domain

the values set here may not be optimal, but are offered as starting values
we rely on the choice of tnmo= and vnmo= to separate data and multiples
pmula=20

pmulb=200

filter data in radon domain

choose=1 # data - multiples

sunmo par=$parfile smute=$smute < $data |

suradon xopt=$xopt lenx=$lenx offref=$offref depthref=$depthref \

168

169

pmula=$pmula pmulb=$pmulb interoff=$interoff pmin=$pmin \
pmax=$pmax dp=3$dp choose=$choose igopt=$igopt |
sunmo par=$parfile invert=1 smute=$smute > $radondata

\n up (don’t use this if there are multiple radon jobs running)
#/bin/rm -f radontmp*
exit O

It takes several hours (yes, that’s right hours perhaps 5 to 6 hours, maybe longer to run
this process on the full dataset.

We may view the results of the Radon transform multiple suppression by making
an NMO correction to some relevant speed, such as those used in assignment #5 and
stacking to make a brute stack of the data, for example

$ sunmo vnmo=1500,2200,3000 tnmo=0,1,2 < radon.gain.jon=1.cdp.su key=offset |
sustack | suximage perc=99 &

If multiples are still prominent, then we may need to perform the 7-p filtering with better
parameters, or we may need to apply different filters to different ranges of CMPs.

10.3.8 The at command: using the computer while you are
asleep

There is a famous adage that you cannot get rich unless you can find a way to make
money while you are asleep. In our case, we don’t efficiently use the computer unless we
can run jobs when we are not physically at the machine, such as when we are at home
or asleep. Such processing jobs are called batch jobs. A batch job is a process that is
submitted for later execution. When computers were first invented, all jobs were batch
jobs.

Batch jobs using the at command

On Unix and Unix-like systems, the at command allows processing jobs to be run at a
pre-specified time by the user, whether or not the user is logged in on the system. The
Unix man page for at

$ man at

shows the basic usage.

Suppose you have a shell script called Myshell located in some directory /mydi-
rectory. If you wanted to run this script in the middle of the night, you could do the
following;:

169

170

$ cd /mydirectory
$ at lam tomorrow -f Myshell

An important point is that you need to have the -f. (Today is 13 October 2011, for this
discussion.) To see if your at job is on the list of jobs to be executed, you would type

$ atq
2 Wed Oct 13 01:00:00 2009 a yourusername

The first number is a number designating a job number, the rest of the fields show the
date and time of execution, and your username on the system.

You are now free to log out, and go on with other tasks. The system will send you an
email message. However, if you have special messages that you want the script to email
you, you might have lines like these in your script

echo "Run completed" |
/usr/bin/mail -s "Status of job " myusername@mymail.mines.edu

Here, the echo command is sending a message to your CSM email address with Subject
line saying “Status of job” and message contents saying “Run completed.” You could
have other information emailed to you. If your script fails, the system will email you
with that information as part of the standard operation of at.

Before using this for anything big, try rerunning the Migtest scripts that you ran
for Homework Problem #4 as at jobs. For example, try running Migtest.gb at 1 am
tomorrow morning

cd Temp4

cp Migtest.gb .

cp newvelzx.bin .

cp seismic3.su .

at lam tomorrow -f ./Migtest.gb

€N B fH H P

Then log out, and check your email in the morning.

Make sure that it works as desired before running bigger jobs. The script should run
as before, and you should get an email with the same screen output that you saw when
you ran this on the commandline in the lab. There will be an error because an at job
cannot open an X-window for suxwigb but everything else should be ok.

To get your email, you may need to have a file called .forward (dot forward) in
your home directory on the lab machines, with your email address (e.g. youruser-
name@mymail.mines.edu) as the single line of text in the file.

Killing an at job

We all make mistakes. Sometimes we launch at that we want to remove. If it turned out
that you changed your mind, and didn’t really want to run the job, you would type:

170

171

$ atq
2 Wed Oct 7 01:00:00 2009 a john

$ atrm 2

where this is the job id number that is in the first line of the atq output.

10.4 Homework Assignment #7 due Thursday 15
Oct 2015 and Tuesday 27 October 2015,
before 9:00 AM.

Perform the following operations:

e Mute and perform gaining on your data, then perform the analysis that you did
in Homework #6 to a single CDP from each of these gathers to get tnmo = and
vnmo = values for multiple suppression. You will have a different set of tnmo =
and vnmo = values for each subset of the data.

e Break your data in to several parts via

$ suwind < gain.jon=1.mute.cdp.su key=cdp
min=0 max=500 > gain.jon=1.cdp=0-500.su
$ suwind < gain.jon=1.mute.cdp.su key=cdp
min=501 max=1000 > gain. jon=1.cdp=501-1000.su
$ suwind < gain.jon=1.mute.cdp.su key=cdp
min=1001 max=1500 > gain. jon=1.cdp=1001-1500.su
$ suwind < gain.jon=1.mute.cdp.su key=cdp
min=1501 max=2142 > gain.jon=1.cdp=1501-2142.su

Note that the input file is the full dataset, sorted into cdp gathers, gained, and
muted.

e Then adapt the shell script Radon.final located in /data/cwpscratch/Data5 to
perform the radon multiple suppression on each of these subsets of the data using
the respective tnmo= and vnmo= This part is time consuming, taking several
hours for each part so start early. Note that the tnmo=... and vnmo=..
values go in a files with names specified on the line in the shell script Radon.final
that starts par=filename. The default filename is radon_nmo_vel.par. (All SU
programs have a hidden feature that the commandline argument for parameters
can by kept in a file, called a “parfile,” and read into the appropriate program via
par=parfilename).

171

172

e You should have at least one of these subsets processed for class next week. Perform
the “brute stack” operation from Homework #5 on that subset. For your report,
show the semblance plot of the single CDP gather after multiple suppression, and
show the brute stacks of the 500 CDP panel for the data before and after multiple
suppression.

e If you succeed in performing the multiple suppression on all 4 subsets of the data,
concatenate these together to form the full processed dataset via a command of the
form

$ cat radon.gain.jon=1.cdp=0-500.su radon.gain.jon=1.cdp=501-1000.su
radon.gain. jon=1.cdp=1001-1500.su
radon.gain. jon=1.cdp=1501-2142.su > radon.gain.jon=1.cdp.su

In this case, your report should show the semblance plot of a single CDP gather
and show a brute stack as in Homework #5 of the full processed dataset and submit
that, instead. Remember to show all commands and their parameters that perform
actual processing steps. (Good for 5 more points. Please note. This is not extra
credit. It is an "obstacle.” This is a 15 point problem, but not doing the second
part will not be considered incomplete.)

You might want to read about the at command in the previous section, before doing this
assignment.

Hint: making a radon_nmo_vel.par file

To see what the structure of the radon_nmo_vel.par file is, note that you put tnmo=
and vnmo= pairs in the radon_nmo_vel.par file as you would type them on the com-
mandline. You can also have entries on different lines, and have blank line separators.
One example would be to have for the contents of radon_nmo_vel.par for the entire
dataset:

tnmo=0,1,2
vnmo=1500, 1800,2300

Or if you had a bunch of them for specific CDPs the radon_nmo_vel.par file would
look like:

cdp=265,589,1087,1900
tnmo=0,1,2
vnmo=1500,1800,2300
tnmo=0,1.3,2,2.5
vnmo=1500,1900,2300,2350
tnmo=0,1.3,2.2
vnmo=1500,1900,2320
tnmo=0,1.3,2.2
vnmo=1500,1900,2320

172

173

It may be, however, that for your 4 blocks of CDPs you need to create 4 separate
radon_nmo_vel.par files containing the tnmo= and vnmo= pairs for that particular
block.

Note that the numbers in these examples are totally made up. You don’t have to have
the same number of velocities and times in each pair. Within a pair you have to have
the same number of times as velocities, but the pairs themselves can have differening
numbers of velocities reflecting the values you pick from the semblance.

10.5 Concluding remarks

Our discussion of velocity analysis and multiple-suppression by the radon transform here
is just a warm-up for a more “production level” treatment in Chapter 12.

Obviously, there are many issues that come into play when performing velocity anal-
ysis. We do velocity analysis for multiple suppression, but we also are doing velocity
analysis for stacking. We do not know a priori what the correct NMO velocities are, so
there is an iterative aspect to the process. Once we have suppressed the multiples we
may recognize that our gaining is not very good and we likely need to regain the data and
pick NMO velocities again. Remember also, that we should have muted certain arrivals
at the beginning of all of these operations.

Finally, there is the issue of time. Time is money. We cannot afford to be perfection-
ists! There is a line that has to be drawn. We must not expect more out of our data
than we have a right to expect, but we must also not give up too easily.

References

e Philip S. Schultz and Jon F. Claerbout (1978). Velocity estimation and downward
continuation by wavefront synthesis. Geophysics, 43(4), 691-714.

e Radon, Johann (1917), "ber die Bestimmung von Funktionen durch ihre Inte-
gralwerte Ings gewisser Mannigfaltigkeiten”, Berichte ber die Verhandlungen der
Kniglich-Schsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische
Klasse [Reports on the proceedings of the Royal Saxonian Academy of Sciences
at Leipzig, mathematical and physical section] (Leipzig: Teubner) (69): 262277;
Translation: Radon, J.; Parks, P.C. (translator) (1986), ”On the determination of
functions from their integral values along certain manifolds”, IEEE Transactions
on Medical Imaging 5 (4): 170176,

e Taner, Turhan and Fulton Koehler (December 1969). ”Velocity Spectra-Digital
Computer Derivation and Application of Velocity Functions”. Geophysics 34 (6):
8H9881.

173

Chapter 11

Spectral methods and advanced
gaining methods for seismic data

There is a class of methods that are best called spectral methods because they modify the
amplitude and/or phase spectrum of the data. There are several reasons for performing
such operations. We may find that there is high or low frequency noise in the data that
may be present in the original data, or which may be introduced by processing tools. The
second is to suppress multiples, and the third is to sharpen the waveform to more clearly
define reflection arrivals. There is, of course, the issue of correlating vibrator profile data
with the vibroseis sweep as a prelude to further processing.

Some of these techniques are clearly filtering operations, wherein a particular filter
is convolved with the data. Other techiquess are best thought of as a deconvolutional
processes, that is to say, a process by which data are “inverted” in some sense, to remove
a particular response. We may think of both operations as being related, in that decon-
volution is a convolution with an inverse of a signal. He we find that deconvolution is
also a “filter.”

There are many such methods that have been developed over the decades since digital
data processing was first introduced in seismic data processing in the mid 1950s, but we
will discuss only a small subset of these, to give you a general idea of what to expect in
a commercial environment.

We apply many of these operations prior to velocity analysis, or in conjunction with
velocity analysis, or as a prelude to migrating the data.

11.1 Common assumptions of spectral method
processing

Seismic data result from the introduction of seismic energy into the subsurface followed
by the subsequent recording of reflections either on the surface of the earth or in a well
bore. Such data have a natural frequency band and a natural phase spectrum. We
may seek to change some of these characteristics as part of processing, but we have

174

175

Far field airgun signature

e am—

trace number
H

0 0.2 0.4 0.6
time (s)

Figure 11.1: Example of a far-field airgun source signature

common assumptions about our data that we make, or that we impose on the data as a
precondition for further processing.

The seismic source may have a time history that makes it appear complicated. For
example, a marine air gun signature may have a bubble pulse that follows some time
after the main signal, see Figure 11.1. Because we may think of all resulting reflections
as resulting from a convolutional process involving this source wavelet, complications in
the source waveform may cause the reflections to appear unduely complicated.

Another source of waveform complication in ocean seismic surveys results from a
phenomenon called ghosting. In addition to the direct arrival from the source, there is an
additional arrival that originates from a reflection path that begins at the source, bounces
off of the water surface, and then travels to the subsurface. Similarly, in addition to the
direct reflection from the subsurface, the receiver may record an additional signal that
has traveled to the ocean surface. These ghost reflections are also convolved with the
reflectivity series.

Yet another source of data complication are multiples. These include reverberations
in the water column, with waves bouncing between the sea surface and the sea bottom.
This is not just the first reflection from the sea bottom, but can include large portions
of the seismic arrivals. Again, these reverberations, called pegleg (named for a pirate’s
artificial limb) multiples. While it may be tempting to think of multiples as being merely
added to the data, these too act as secondary sources and are thus convolved with the

175

176

data.

Finally, there may be ambient noise which is added to the data. This can include cul-
tural noise, or natural noise from such sources as wind, or in ocean surveys noise from sea
creatures or from ships, including the ship that is dragging the towed airgun/hydrophone
array.

To deal with these issues, we apply deconvolutional methods. To apply such methods,
we make some physically reasonable simplifying assumptions. These are causality and
the minium phase (delay) and white spectrum assumptions. Underlying all of this is the
assumption that seismic wave propagation is a linear system.

11.1.1 Causality

If the source is an explosion or a pulse from an airgun, or even a sweep from a vibrator,
the resulting data have the property that they are causal, which is to the say that the
wavelets have a definite beginning time. Causality means that there can be no signal
before time zero, or in the case of propagating arrivals, there can be no arrivals before the
shortest traveltime determined by the velocity function for the medium. This, of course,
is a basic principle of physics and should not be a surprise.

Many processes that change the frequency spectrum also will tend to cause a distortion
in the waveform resulting in signals that may appear later than the time predicted by the
wavespeed. Sometimes we deliberately change the phase characteristics of the wavelets in
the data as to make the wavelet symmetric about the expected arrival time, thus giving
the appearance that energy is coming in a bit earlier than the predicted arrival time. In
this case, we Such signals are called zero-phase waveforms. If the data are then processed
to appear to be similar to sinc functions, which is to say, symmetric zero-phase signals,
then the reflectors will occur at times of the peaks of these “bandlimited delta functions”.

11.1.2 Minimum phase (aka minimum delay)

A signal which has a definite time of beginning and also has the majority of its energy
in the beginning part of the waveform is called a minimum phase (aka minimum delay)
wavelet. There is a precise mathematical definition, but physically we may consider any
“front-loaded” signal to be or to approximately a minimum phase waveform. Again,
many linear, or mildly nonlinear physical processes will produce signals that have this
property. Errors that we see, then could be expected to result from a deviation from this
frontloadedness.

11.1.3 White spectrum

The term “white spectrum” is an allusion to the notion of white light being composed
of a full visual spectrum of frequencies. For seismic data, many processes that we apply
would become unstable if amplitudes at particular frequencies were to be zero or near
zero. For deterministic processes the instability comes from division by zero or division
by a small number, as might be encounted by performing deconvolution in the Fourier

176

177

transform domain. For statistical processes which are viewed in some sense as matrix
operations, the issue is to introduce a perturbation that moves the system away from
null space of the matrix in the representation.

We know that all data are bandlimited so the remedy is to include a small “white
noise” term that will prevent this instability. The expense is that all such operators
will introduce noise. Generally, frequency filtering is a remedy for this noise issue. Such
a white-noise parameter is usually a small number multipled by the maximum of the
autocorrelation, so it reflects the size of the amplitude spectrum.

There are four operations that are the working tools of digital singnal processing.
These are convolution, cross-correlation, autocorrelation, and deconvolution.

11.1.4 Linear systems

Geophysicists have realized a tremendous benefit from a simple concept. That is the
concept called the convolutional model of seismic wave propagation. Because the wave
equation is a linear partial differential equation equation, the simplest way of looking at
all processes involving the wave equation is to consider the processes as being a linear
system.

The common metaphor is that of a “black box.” That is, we are assuming that a
geophysical process is a linear system with an input and an output, but the only other
thing that we know about the black box is that we assume it behaves in a linear fashion.
That is, we assume that the output from a process depends linearly on the input.

A result known as “Green’s theorem” tells us that if we have a particular solution
called the “Green’s function” of the linear system, which is to say the output of the linear
system given the input of a Dirac delta function, we may form all possible solutions by
the convolution of a given input with the Green’s function. The Green’s function is also
known as the “impulse response” or the “transfer function.” (In modern mathematical
usage the term ”fundamental solution” is often seen.) This is a feature of the principle
of superposition.

We have three mathematical systems that we will switch back and forth freely be-
tween. The first is the continuous representation. In this representation we write signals
and filters as continuous functions of time, apply the Fourier transform, and perform
computations in the frequency domain. While this formulation is straightforward and
yields a great deal of insight into our problems, this is a more computationally expensive
approach than to perform our operations in the time domain.

When we represent data as discrete samples in the time-domain, there is a represen-
tation known as the Z-transform, which allows digital interactions to be represented as
the multiplication and division of signals and filters as polynomials.

Yet a third representation is to note that operations that are represented as mul-
tiplications of discretely represented time-domain signals may be represented in linear
algebra form as matrix multiplications, or matrix-vector multiplications.

Each of these representations has its own merits in perimitting insight into the pro-
cesses being discussed.

177

178

What does “linear” mean and why is it good?

In the experience of mathematical physics, many processes can be described or may be
approximated by linear ordinary or partial differential equations. The short answer of
why linear is good, is that linear makes the mathematics easier.

If multiply the input to a linear system by a scalar then the output is scaled by the
same value. If we shift the input to the black box, the output is shifted by the same
amount. That’s it.

Furthermore, linear systems have a property called the principle of superposition.
This means that new solutions of a linear system may be found by forming the linear
combination of previously determined solutions. This fact allows transform theory to
be applied. That is, we may use invertible mathematical transformations to decompose
input functions into a family of simpler functions, apply the linear system to these simpler
functions, and then add up the results to yield the output for the full function.

11.2 The three mathematical languages of signal
processing

There are three formulations that are useful in signal processing. These are the continuous
function, the Z polynomial, and the matriz and vector representations.

The continous function representation is made via the Fourier transform. Though,
formally we can write signals, wavelets, and filters as contiuous functions, these are
applied discretely as digital data equivalents.

The Z-transform representation replaces all functions with a polynomial representa-
tion that has many of the same properties of the frequency domain representation.

Finally, we can represent digital data operations as matrix-on-matrix, or matrix-on-
vector multiplications.

11.2.1 The Forward and Inverse Fourier Transform

The most common decomposition is called the Fourier transform which decomposes a
given signal into sines and cosines. The formal representation of the forward Fourier
transform

F(w) = /°° Flt)etdt (11.2.1)
0
and the inverse Fourier transform
£(t) = /Oo Flw)e®tdw. (11.2.2)

Here exp(iwt) = cos(wt) + isin(wt). In the first expression, the function f(¢) is decom-
posed into to the values of all of the sines and cosines of different frequencies. The inverse
process collapses the sines and cosines, sums up the values for each frequency, yielding
the original function f(¢) back.

178

179

We can use this definition of the forward and inverse Fourier transforms to formulate
convolution, cross correlation, and autocorrelation.

11.3 Convolution, cross-correlation, and
autocorrelation

There are three related operations that are encountered in signal processing. Thes are
convolution, cross-correlation, and autocorrelation.

11.3.1 Convolution

The formal definition of convolution is given by the continuous integral relation
F(t)«G(t) = [drF(r)G(t - 7). (11.3.1)

This is not a “definition” but a relation that arises naturally when solving boundary
value problems using Green’s theorem. If we replace F' and G by their inverse Fourier
transform definitions, we obtain the result that

F(t)xG(t) = 217r /_O:O f(w)g(w) exp(—iwt)dw, (11.3.2)

which means that convolution is multiplication in the frequency domain.

11.3.2 Lab Activity #18: Frequency filtering

The simplest, yet one of the most important spectral methods is simple frequency filtering.
If we look at the spectra of the traces in CMP gather 265

$ suspecfx < gain.jon=1.cdp=265.su
| suxgraph title="spectra"
title="spectra" labell="frequency"
label2="amplitude" &

we see that the data have most of their frequency spectral values between 5 Hz and 80
Hz. The rest can be considered to be noise, which could be boosted and distorted by
futher processing steps. When engaging in signal processing the old computer science
adage ”garbage in garbage out” it is often amplified to "small garbage in, a lot of garbage
out.”

Applying simple frequency filtering with sufilter we see in the frequency domain

$ sufilter < gain.jon=1.cdp=265.su
£=0,5,70,80 amps=0,1,1,0 | suspecfx
| suxgraph title="spectra"
title="spectra" labell="frequency"
label2="amplitude" &

179

180

a) amplitude b) amplitude
10‘00 20‘00 3q00

1000 2000 3000
1 1 1 O

frequency
frequency

100 100+

1204

120

spectra spectra

Figure 11.2: a) Amplitude spectra of the traces in CMP=265, b) Amplitude spectra after
filtering.

180

181

that the data are truncated. Note that it is up to the user to figure out the full range
of frequencies in the data that are to be kept. It may take some experimentation with
further processing steps to find the correct filter range.

The program sufilter applies only simple tapered zero-phase filters to the data. There
is another class of filter known as “Butterworth” filters, which in SU may be performed
via the program subfilt. Butterworth filters are described by a solution a class of ordinary
differential equation. Such filters were originally applied as analog preprocessing during
the time of data acquisition.

Are we done with frequency filtering? Often, not. Other spectrum modifying pro-
cesses, as well as other transforms we may use, may introduce noise into the output. We
may need to apply our simple bandpass filter again owing to these noise sources.

11.3.3 Lab Activity #19: Spectral whitening of the fake data

It may have occurred to the reader after seeing the spectra of the real data that it may
be of benefit if the spectra of the traces were flat, instead of having the many peaks
and valleys. This is the process known as spectral whitening. We expect that such an
operation would tend to sharpen data, but with the caveat that we know it will sharpen
the noise, as well, making everything more “spike-like.”

The basic idea is simple. We take the data into the frequency domain, and consider
the representation of the data d(w) as a complex-valued function

d(w) = |d(w)|e*®,

We then multiply the amplitude |d(w)| by a function 1/|d(w)|, taking care not to divide
by zero, so that |dpew(w)| = 1. This may be over the full range of 0 to the Nyquist
frequency, or over some partial range. We then inverse Fourier transform the data. This
operation is guaranteed to change the relationship between the amplitude and the phase
function, as

where d,. is the called the real part of d and d; is the called the imaginary part of d. Here,
the amplitude is given by the modulus of d as

| = /&2 + &

d;
= t _
¢ = arctan (dr)

We can experiment with spectral whitening in SU using the command suwfft. This
program gives the user the choice of whitening, from moderate to extreme. The plots
labeled “traditional” use the default settings of the program, which are not really full
spectrum whitening.

For example

and the phase by

181

182

trace number

offset (m)
-2000

-1000

fake data (spectrally whitened)

Synthetic data (no multiples)

) fake data with spectral whitening applied. Note

that spectral whitening makes the random background noise bigger.

Original fake data b

)

Figure 11.3: a

182

183

$ suwfft < fake.su w0=0 wi=1 w2=0
| suifft | suxwigb xcur=2 title="fully white spectrum"
$ suwfft < fake.su
| suifft | suxwigb xcur=2 title="traditional spectral whithening"

and

$ suwfft < gain.jon=1.cdp=265.su w0=0 wi=1 w2=0
| suifft | suxwigb xcur=2 title="fully white spectrum"
$ suwfft < gain.jon=1.cdp=265.su w0=0 wi=1 w2=0
| suifft | suxwigb xcur=2 title="traditional spectral whitening"

show us what this does to our data. The data are sharpened, but then so is the noise.
Another test is to apply spectral whitening to our CMP 265 data. Recall that fre-

quency filtering may need to be applied before and after the whitening process. We see

that the spectrum is an idealized white amplitude spectrum whose shape is the filter

$ sufilter £=0,5,80,90 < gain.jon=1.cdp=265.su |
suwfft w0=0 wl=1 w2=0 | suifft | sufilter f=0,5,80,90
| suspecfx | suxgraph title="Spectrum after whitening" &
$ sufilter £=0,5,80,90 < gain.jon=1.cdp=265.su |
suwfft | suifft | sufilter f=0,5,80,90
| suspecfx | suxgraph title="Spectrum after whitening" &

and though it appears to be a single curve, these are really 55 identical spectra on on
top of the other, for each of the 55 traces in our gather.

The spectral whitening process involves the cascade of forward and inverse Fourier
transforms. Owing to zero padding in these transforms, there may be more samples per
trace on the output than on the input, so an extra step of windowing the data with
suwind in time is required

$ sufilter £=0,5,80,90 < gain.jon=1.cdp=265.su |
suwfft | suifft | sufilter £=0,5,80,90 |
suwind itmin=1 itmax=1500 |
| suxwigb title="data after traditional spectral whitening" &

(Don’t forget the suifft step!) The windowing passes samples from sample 1 through
sample 1500 on each trace. As with our fake data, the real data have additional arrivals.

We can run Radon.test on versions of the data after spectral whitening has been
applied. Observe the changes in the semblance plots after spectral whitening. It may be
that we would prefer to use spectral whitening after multiple suppression.

Should we run spectral whitening? The type of spectral whitening we discuss here
is a brute force modification of amplitudes, which will certainly introduce noise into the
output. Frequency filtering likely will be needed to remove frequency information that
is totally fabricated by the spectral whitening process. We run spectral whitening (and
spiking deconvolution) to improve resolution of velocity picks and to make reflectors
sharper. To the end that the tools do that job, we may apply them. You definitely need
to experiment with the operation to see if it helps.

183

184

11.4 The Discrete Representation of Seismic Data

In the past section, we discussed the application of filters that modify the spectrum of
the input seismic signal. Though we are implementing the operations on sampled data,
we use a continuous function representation of the processes that were being applied to
formlulate each technique.

We find, however, that the act of digitizing a signal introduces its own peculiarities.

11.4.1 The Forward and Inverse Z-transform

If we take the (causal) Fourier transform of our reflectivity series R(t), we obtain a series
in terms of shifted complex exponentials

00 , oo IV)
Rw) = / R(t)e™" dt = / 3" RyS(t — mi)e™ dt
0 0 k=0
— Z Rkezwrk — Z Rkezkat
k=0 k=0

where we note that the time sampling interval is a constant At such that 7, = kAt.
If we define ¢ = At. The “Z” in Z-transform is this shifted complex exponential,
Z = exp{iwAt} = exp{iw¢}. The "transform” is the transformation of a this sampled
data into a polynomial in Z. This polynomial is called the Z-transform representation
of R(t)

N
R(Z)=>" RpZ".
k=0

The advantage of this representation is that we have effectively taken the Fourier trans-
form of our initial digitally sampled data by inspection!

All we have to do is to multiply the k-th term of our sequence digital value with Z*
and add up the resulting terms to form the k-th order polynomial in Z. For a Z-transform
representation of a finite number of terms this is all we need to know.

The Z-transform representation inherits the property that convolution and deconvo-
lution of signals is represented as multiplication and division, respectively of the trans-
formed data, as we see with Fourier transformed data.

More mathematics

For an infinite series, such as we might obtain through a Taylor expansion of a function
or through a process of long division as in the case of the geometric series, we must
also specify a region of convergence, which is a circle in the complex plane. Poles in
the Z-transform representation will lie outside that circle of convergence. Zeros of the
polynomial may lie inside the unit circle of convergence.

184

185

11.4.2 The inverse Z-transform

We can use the properties of the residue theorem from complex variables to get our
original series back. The inverse Z-transform has to have the form

1
Ry = 7/ R(Z)Z" ' dz, 114.1
" ori Jo (2) ()
for each term where the contour C' encloses the origin.
We can see why this is so by considering that for Z = exp{iw¢} and for C being a
circular contour enclosing the origin. Simply substituting for Z and noting that dZ =
1Zd¢

27 . .
I = / Z7vdz = z/ e WP i = 2,
c 0

which shows where the division by 27¢ comes from.
The other possibility is to consider for n > 0

]:/Z"deo.
C

This integral vanishes by Cauchy’s theorem because the integrand is an analytic function
of Z. The contour integral in equation (11.4.1) sifts through the each term of the series
representation of R(Z) and returns the original sequence of values as discrete values,
giving us our original series of digital samples back.

The inverse Z-transform is effectively the inverse Fourier transform, as long as the
contour C'is the unit circle |Z] = 1.

11.5 Deconvolution

We have another way of whitening the spectrum. This method is to deconvolve the data.
This may be either a deterministic process, where an estimate of the wavelet is obtained,
and is divided out of the data in the frequency domain. More commonly we apply
deconvolution via a statistical estimate of the wavelet, which is based on the assumption
that the data are minimum phase (aka minimum delay), under an error minimization
criterion. Thus we assume that our entire data consists of spikes convolved with minimum
phase (aka minimum delay) wavelets.

Before launching into the application of minimum phase (aka minimum delay) decon-
volution, we discuss the operations that we will be applying to data in general mathe-
matical terms.

11.5.1 Convolution of a wavelet with a reflectivity series

The simplest model of a seismic trace is to consider the notion of the reflectivity series.
The idea is simple. The world is assumed, to first order, to consist of simple reflectors,
each with its own arrival time and its own reflection coefficient R, for the k-th reflector.

185

186

Seismic waves are represented as rays that travel from the source to each reflector
and back, taking 7 for the two-way traveltime. In this ideal world, we have only single
scattering, so there are no multiples (yet).

The simplest seismogram that could be recorded would then be a collection of spikes
of each of a respective height Ry, having values which could be positive or negative,
arriving at the respective time 7y

R(t) =) Rud(t — 7)

k=1

where Ry, is the reflection coeficient of the k-reflector and §(¢t — 75) is the Dirac delta.
We may think of this Dirac delta as a spike that only “turns on” when ¢t — 7, = 0 and is
“turned off” (zero) the rest of the time.

This series is called the reflectivity series—a popular notion in exploration seismology.
If we want to make a seismogram, then we would convolve a wavelet W (t) with the
reflectivity series to form a seismogram. Note that when we write the reflection
coefficient of the k-th reflector, we write that as R;, but when we write the
k-th sample of the digitized reflectivty series R(t), we write Ry.

A remarkable result of digital signal processing is that the process of digitizing a
signal yields the Z-transform of a function. Simply stated, the Z-transform of a signal is
polynomial representation of the discretely sampled signal with the k-th sample multipled
by the factor Z*.

Thus, without taking expensive Fourier transforms, we are able to per-
form convolution and deconvolution of digital data by serial multiplication of
digital representations, often making digital data processing in the time do-
main inexpensive. This “serial multiplication” is the multiplication of the Z-transform
polynomial representation of the given functions.

The division of polynomial representations would then be deconvolution. As with
division in the Fourier domain, the issue of avoiding division by zero also critical in the
Z-transform representation of deconvolution.

Minimum phase in Z-transforms

In the world of digital signal processing in geophysics, we are dealing with causal func-
tions. This means that there is a specific beginning time for signals. We also have the
issue of where the energy is in the signal.

We call waveforms that are “front loaded” or contain most of their energy at the
beginning of the wavelet “minimum phase” (aka minimum delay) signals,

Such a Z polynomial could be of some degree m but it might be that only the first
few terms of the Z polynomial representing the wavelet are of importance, the rest could
be near zero, which is to say that the low degree terms in the Z-transform contribute the
most.

186

187

11.5.2 Convolution with a wavelet

Our digital data are convolved with a wavelet given by W (t)

D(t) = W(t)*R(t)

= [WERE-ndr

—0o0

_ /OO s(w)w(w)e ™ dw.

27 J—oo

Thus, recorded data D(t) is the convolution of a wavelet W (t) with the reflectivity
series R(t). The last line shows the Fourier transform domain form of convolution.
Convolution is multiplication in the frequency domain.

Convolution of Z-transform representations

In the language of Z-transforms, convolution of two signals is the multiplication of the
two polynomial representations in Z of the functions.

11.5.3 Deconvolution

Deconvolution then is the inverse process, which is to say, the process of removing the
effect of a waveform, to produce a desired output.

Symbolically, we have recorded data D(t) with a particular waveform W (t) possibly
distorting the arrival time of a given reflection. What we want ideally is to reconstruct
the reflectivity series by applying the inverse process

R(t) = W(t) « D(t).

We need only determine what the “inverse of W (¢)” given by W~'(¢) is. If we write this
out in the Fourier domain representation, then we see that

R(t) = W 'xD(t)
= /_OO W) D(t — t1)dt

L o D(w)
_ w d .
o /_oo W)

Thus, we see that deconvolution is division in the frequency domain.

187

188

11.5.4 Deconvolution of functions represented by their
Z-transforms

In terms of Z-transforms, we would then be dividing the polynomial representation of
the signal by the polynomial representation of the wavelet. The zeros of the Z-transform
polynomial become poles in the deconvolution result, which, if were were performing the
inversion by contour integration would be the contribution to the contour integral.

11.5.5 Division in the frequency domain - Deterministic
deconvolution

There is a problem, however, when we consider the Fourier transform as a spectrum.
If the function is zero over a range of values in the frequency domain (as opposed to
isolated zeros in the Z-transform) in the Fourier transform form of the wavelet given by
the function w(w), then deconvolution is unstable or undefined. This follows because
division by a small number introduces computational instability, and of course, division
by zero is not defined.

We recall that w(w) is a complex valued function, which may be written in complex
exponential form as

w(w) = w(w)]e

or as the sum of real and imaginary parts as

or as the sum of real and imaginary parts as
w(w) = w,(w) — iw;(w).

If we multiply w(w) by its complex conjugate, we have the square of the modulus of w(w)
as above
‘2

lw(w)|* = w(w)w(w).

Returning to our deconvolution problem, multiplying top and bottom of the integrand
by w(w), we have

R(t) = W' D(t)

1 /OO w(w)d(w)efiwtdw_

21 J—oo Jw(w)]?

188

189

We still haven’t solved the problems of division by zero in w(w) because if w(w) has
a zero, then so will |w(w)|. We solve this problem by adding a small number ¢ to the
denominator

R(t) = W 'xD(t)

1 awd)
ord BT e L

The quantity € is the noise or whitening or white noise parameter. This parameter is
chosen to be small enough to stabilize the inverse, but not so big as to skew the results,
and, as such is scaled by the maximum of the observed autocorrelation. Thus, formally
we can define the inverse waveform W~!(¢) by its Fourier transform representation

PR w(w) —iwt
w (t)—%/_w(m(w)me dw.

It is important to remember that no matter how a deconvolutional process
is performed, we think of deconvolution as division in the frequency domain.
All deconvolution schemes must then have the equivalent of a white noise parameter to
stabilize the division process, by preventing division by a small number or by zero.

Deterministic deconvolution in SU - sucddecon

In SU the program sucddecon performs deconvolution by a direct division in the fre-
quency domain, given an input waveform as the sufile=filename.

$ sucddecon

SUCDDECON - DECONvolution with user-supplied filter by straightforward
Complex Division in the frequency domain

sucddecon <stdin >stdout [optional parameters]

Required parameters:
filter= ascii filter values separated by commas
..or...
sufile= file containing SU traces to use as filter
(must have same number of traces as input data

for panel=1)

Optional parameters:

panel=0 use only the first trace of sufile as filter
=1 decon trace by trace an entire gather

189

190

pnoise=0.001 white noise factor for stabilizing results
(see below)

sym=0 not centered, =1 center the output on each trace

verbose=0 silent, =1 chatty

For example, if we use the far field air gun signature in Fig 11.1 as our input waveform
we can apply succdecon to deconvolve a panel of our data with this waveform. Here we
deconvolve cdp 265

$ sucddecon sufile=farfield_gun.su < gain.jon=1.cdp=265.su |
suxwigb title="deterministic deconvolution" key=offset perc=99 &

which looks rather bad. We can see that there have been frequencies manufactured by
the filtering process, so applying a bandpass filter

$ sucddecon sufile=farfield_gun.su < gain.jon=1.cdp=265.su |
sufilter £=5,10,70,80 |
suxwigb title="deterministic deconvolution" key=offset &

we obtain a more acceptable result.
Note also, that the value of the pnoise= parameter can make a big difference. In fact
the default value is low. Don’t be afraid to try numbers like pnoise=1 or pnoise=10.

$ sucddecon sufile=farfield_gun.su pnoise=10 < gain.jon=1.cdp=265.su |
sufilter £=5,10,70,80 |
suxwigb title="deterministic deconvolution" key=offset &

11.5.6 Signature deconvolution using homomorphic wavelet
estimation

If we had a far field gun signature for each shot, or some other estimate of the wavelet,

then we could apply deterministic deconvolution to each shot. Such a shot by shot

deconvolution is called “signature deconvolution.”

There are a number of ways we could proceed to estimate the wavelet. Each method
is based on the following assumptions:

e the waveform is minimum phase
e the wavelet is the only part of the data that does not change
e the reflectivity series is random.

An airgun signature is made to approximate a minimum phase (delay) waveform, so
for ocean data with an airgun source this may not be a bad assumption. Even if we
had a farfield airgun signature for each shot, this would not take into account the loss of
higher frequencies due to anelastic attenuation.

190

191

offset (m)

-3000 -2000 -1000

Ot f |
222a
J $53335 223‘3
g it i i
3 50 e
Ml ¥
4333 N § : 5%2 3 21‘22 §§ si:g% zxziz
i g% nnil 5 S

2 &2::2£“'§§§5§§2 %

Deterministic Decon of CDP 265

Figure 11.4: Deterministic decon of CDP 265 using the farfield airgun signature estimate
from Fig 11.1

191

192

11.6 Cross- and auto-correlation

A related mathematical operation to convolution is the cross correlation. The cross-
correlation of two functions is the multiplication of one function by the com-
plex conjugate of the other in the frequency domain. Here we represent the
cross-correlation by the symbol “xcor,” which for digital data is the serial multiplication
of the discrete representations of A(t) and B(t). We write this as in the Fourier domain
as

A(t) xcor B(t) = ! /Oo a(w)b(w)e ™ dw.

271 J oo

_ | a@pw)e .

271 J oo

We can see that the auto-correlation is the product of a function with its own
complex conjugate in the frequency domain.

A(t) xcor A(t) = ! /OO a(w)a(w)e ™ dw.

T 21w

Thus the frequency domain representation of the autocorrelation of our waveform is
given by the |w(w)|?, which appears the denominator of the frequency domain form of
the deconvolution, and in the Fourier transform representation of inverse wavelet W (t).

Whether deconvolution is performed in the time-domain, or in the frequency domain,
the common elements of the auto-correlation, the ¢ noise or whitening parameter,
and the wavelet W (t) are present.

11.6.1 Z-transform view of cross-correlation

Given the Z-transform representations of two signals B(Z) and A(Z)
N N
AZ)=> arz" and B(Z)=)_bZ
k=1 =1

we represent the complex conjugate B (Z) as the same series, but with terms represented
by the negative powers of Z

N
B(Z)=Y bz"
=1

The cross-correlation of A(Z) and B(Z) is then the product of the polynomials

A(Z)B(Z) = (é aka> (é blZ‘l> :

The effect is to flip the order of the B(z) series in the multiplication to the opposite order
as would be done with convolution.

192

11.6.2 Cross correlation and auto correlation in SU suxcor

and suacor

$ suxcor

SUXCOR - correlation with user-supplied filter

suxcor <stdin >stdout filter= [optional parameters]

Required parameters:

sufile=
filter=

Optional parameters:

vibroseis=0
first=1

panel=0
ftwin=0
1twin=0
ntwin=nt

ntrc=48

$ suacor

ONE of

file containing SU traces to use as filter
user-supplied correlation filter (ascii)

=nsout for correlating vibroseis data
supplied trace is default first element of
correlation. =0 for it to be second.
use only the first trace of sufile as filter
=1 xcor trace by trace an entire gather
first sample on the first trace of the window
(only with panel=1)
first sample on the last trace of the window
(only with panel=1)
number of samples in the correlation window
(only with panel=1)
number of traces on a gather

SUACOR - auto-correlation

suacor <stdin >stdout [optional parms]

Optional Parameters:
odd number of time samples output

ntout=101

norm=1 if non-zero, normalize maximum absolute output to 1

sym=1

if non-zero, produce a symmetric output from

lag -(ntout-1)/2 to lag +(ntout-1)/2

193

193

194

11.7 Lab activity #20: Wiener (least-squares)
filtering

There is a class of deconvolutional processes known as Wiener filters or prediction error
filters, which have been found to be useful in exploration seismic methods. The method
is called “predictive” because it assumes that the data have a specific character that
allow later parts of the data to be predicted from earlier parts of the data.

Wiener filtering assumes that the data are minimum phase (aka minimum delay).
While there is a requirement that the spectrum of the data is white, a small “noise”
parameter is added or assumed in the algorithm to prevent division by zero. Physically,
if a waveform is minimum phase (aka minimum delay) its energy is located in the front
part of the waveform.

11.7.1 A matrix view of the convolution model

The convolutional model of seismic waves holds that the data D(t) are formed by the
convolution of a wavelet W (t) with a reflectivity series R(¢). Symbolically this is
represented as

D(t) =W(t) = R(t), (11.7.1)
where
N
k=0
Here 0(t — 73) is the Dirac delta function, which turns on only at time 73, the two way
traveltime to the k-th reflector, and Ry is the reflection coefficent (either positive or
negative) of the k-th reflector.

As an integral, the convolution of the reflectivity series R(t) with the wavelet W (t)

is defined as o

D(t) = W(t) % R(t) = / W(t — 7)R(7)dr.

— 00

The discrete version of this operation can be written as
N
D, = Z Wi Ry
k=—N

Note how the integration variables in the continuous version correspond to the indexes
in the discrete version.
We can write this numerically as the matrix multiplication

WR =D (11.7.2)

where W is a band matrix, whose rows are composed of shifted versions of a discrete repre-
sentation of the wavelet W (t) = {wy, w1, wy, ...}, the reflectivity series R(t) = {ro,r1, ...},

194

195

and the data D(t) = {do, dy, ...}

To
r1
[wg w; wy ... 0 0 0 0 0 0 7] rs [dy
0 Wo w1 Wy ... 0 0 0 0 0 dl
0 0 Wy W1 Wa 0 0 0 0 d3
0 0 0 Wy W1 W2 0 0 0
0 0 0 0 0 0 = .. |. (11.7.3)
0 0 0 O o ... 0 0
0 Wy W1 W2 0
0 Wy W1 Wa
L 0 Wy W1 wWao | L dm |
L "n

We want to solve for R, but W is, in general, a non-square (m X n) matrix. Our
solution is the pseudoinverse or least-squares solution. We multiply by the transpose of
W, which we write as WT, we obtain

WI'WR=W'D (11.7.4)
where ideally the solution for D is given by taking the inverse of WYW, yielding
R=(W'W)'W'D. (11.7.5)
For stability €I is added to the WTW to yield the final form
R=(W'W +¢cI)"'W'D. (11.7.6)

As written, this expression describes a mathematician’s view of the problem, but this
form is not really practical to implement.
If we go back a step
WI'WR=W'D (11.7.7)

The right hand side of the contains WT D which is the cross-correlation of the wavelet
W with the recorded data D. This is a spiked version of the data. The quantity W*W is
the matrix of autocorrelations of the wavelet. The quantity W D of bandlimited spikes,
whose heights are proportional to the reflection coefficients. If the original data have no
multiples, then the cross-correlation of the wavelet with the data will be a band-limited
“spiked” version of the reflectivity series and would be a form of “spiking deconvolution”.
Again, we are less satisfied with this because we do not have the wavelet W needed so
we can compute WTD.,

The left hand side of the expression contains WTW | which is a matrix whose rows
are composed of the autocorrelation of the wavelet, shifted successively by one sample

195

196

on each row

b0 P11 P2 . Pna

p-1 o P11 . Pn-a
WIW = 1| ¢ ¢4 ¢ ... ¢ns |. (11.7.8)

nt o o b1 o

Here, ¢_(n_1), .., 0—1, ¢0, ¢1, ..., ¢n_1 is the autocorrelation of the wavelet W (t). We note
that this is symmetric such that ¢_;, = ¢. If the reflectivity series is random, such that
the later values of of R(t) cannot be predicted from earlier values, then the autocorrelation
of the data D(t) is approximately the same as the autocorrelation of the wavelet W (t).

At most, these discussions tell us about the problem of deconvolution, without giving
us a practical solution to implement. We must look further.

11.7.2 Designing wavelet shaping filters — Wiener filtering

If the reflectivity series R is random, then the autocorrelation of the recorded data D is a
good approximation to the autocorrelation of the wavelet W, because at most the auto-
correlation of a random sequence is a constant value, as matricies RT R is the identity
matrix /).

We don’t want the entire autocorrelation, only the autocorrelation waveform, that is,
the sinc-function like part that is in the middle of the autocorrelation output. We will
call this waveform ®(t).

Suppose that we want to create a filter that will take data with given input wavelet
W (t), and yield a desired output wavelet V' (¢). Then we want to design a filter F'(¢) such
that the application of the filter to W (t) yields V (¢),

W(t)x F(t) = V(1) (11.7.9)

Writing this convolution in the discrete representation, we have

n—1
> Wik fre = Um. (11.7.10)
k=0

Likely we cannot solve this problem exactly, so there will be an error vector E obtained
by subtracting the right hand side from the left hand side

k=0

11.7.3 Least-squares (Wiener) filter design

An approach developed independently by N. Wiener and A. N. Kolmogorov in the early
1940s is to apply least-squares optimization to the problem of designing the wavelet
shaping filter. The filters that result from this approach are often called Wiener filters.
Because noise is always present we cannot solve the system exactly.

196

197

The square of the error is given by

= i <ni wj_kfk — Uj) (ni wj_kfk — ’Uj) . (11712)
7=0 \k=0 k=0

The extra summation is required because the error is a vector, but the square of the error
is taken as the dot product of the error vector with itself, which is a scalar. We much
prefer dealing with a scalar quantity than a vector quantity in this context.

Minimization means taking the derivative and setting the result to zero.
Which derivative? The thing that is varying is the filter, so we should be differenti-
ating with respect to the filter values

o o mo [1 n—1
aipr|2 — afp 2 (Z Wj— kfk — Uj> (];) wj,kfk — Uj) . (11713)

Applying the chain rule, and setting E? = 0

7=0

We note that dfy,/0f, =1 when k = p and is zero when k # p, hence we have (canceling
the factor of 2)

m n—1
0=> wj—p(>_ Wn—ifi — Um). (11.7.15)
§=0 k=0
which may be rewritten as
m n—1 m
S Wity Y Wik fr = D Wiy (11.7.16)
j=0 k=0 Jj=0
In matrix notation this is
WIWF =WV (11.7.17)

The matrix WTW is the matrix of autocorrelations of the wavelet, as before, and the
right hand side is the crosscorrelation of the wavelet, with the desired output V'(t). The
matrix of autocorrelations is in a form called a Toeplitz matrix. There is a recursive
method of solution of Toeplitz systems pioneered by N. Levinson in 1947, and improved
by Durbin in 1960, and others since that time. The recursive method allows for the filter
F' to be solved for directly. This makes what might seem like a difficult process rather
simple.

Several programs in the SU package use this method for performing spiking deconvo-
lution, predictive or gapped-deconvolution, and wavelet shaping using these facts.

197

198

11.8 Spiking deconvolution

Our approach must be something different. The approach that we will use will be to
design a filter that will modify the autocorrelation. The plan of attack will be to
model the part of the autocorrelation that we do not want, and to subtract
that part from the data. If we actually have a minimum delay wavelet, this filter
will modify the data to eliminate that part of the data that corresponds to that part of
the autocorrelation we do not want.

Suppose that we want to do spiking deconvolution. If the data were already spiked,
then the autocorrelation would be a delta function at sample number zero, and the auto-
correlation vector would consist of a single nonzero value (¢, 0,0, ...), meaning that the
autocorrelation matrix would be a diagonal matrix, with ¢g repeated down the diagonal.
The value of ¢y might be normalized to 1, or not. Thus we want to annihilate every
point in the autocorrelation vector except for the first point.

Our issue is to solve the problem

b0 P11 P2 .. Pnd fo 1
b1 o P .. Pn-s fi G2
bo b1 o o bnall o l=|] (11.8.1)
buz o o b b0 || face b

Notice that the vector on the right beings with ¢; not ¢y.

Thus we want to solve the Toeplitz system for the filter fy, f1,..., fu_2. This allows
us to compute the values of the autocorrelation after the first value. We then want to
subract this from our data.

Actually filtering and then subtracting is unnecessary. We can build the subtraction
into the filter by writing 1 — F = (1, — fo, — f1, ..., —fn—1). The only thing that we need
to know is how many points long the filter should be. This is the mazimum lag of the
spiking filter. We take the length of the autocorrelation waveform as the value
of the maximum lag for spiking deconvolution. The minimum lag we use is the
default value of 1 sample.

The reader should be aware that this algorithm is somewhat insensitive to choice of
the number of samples in the autocorrelation. We do not need to worry about picking
an exact value, as there are a number of values that will work more or less equally well.

11.8.1 What does “lag” mean?

If a time delay is in seconds, or other time units, we call that difference in time simply
a delay. If we express a time delay in samples, then it is the convention to call that a
lag. In the SU programs that have “lags” those lags are expressed in seconds, which are
much easier to find on a plot than to compute a sample number.

198

a ““*":fe i o

fOr
ve (spiking) decon

200

11.8.2 Spiking Deconvolution in SU
In SU the program supef may be used to perform spiking deconvolution

$ supef
SUPEF - Wiener predictive error filtering

supef <stdin >stdout [optional parameters]

Required parameters:
dt is mandatory if not set in header

Optional parameters:

cdp= CDPs for which minlag, maxlag, pnoise, mincorr,
maxcorr are set (see Notes)

minlag=dt first lag of prediction filter (sec)

maxlag=last lag default is (tmax-tmin)/20

pnoise=0.001 relative additive noise level

Note also, that the value of the pnoise= parameter can make a big difference in the
output.

If our data consist of a wavelet W convolved with the reflectivity series R, further
convolved with multiples M, then our model in the previous section is not quite right.
The autocorrelation will contain repetitions due to the multiples.

If the wavelet is minimum phase (aka minimum delay), then most of the energy will
be located at the beginning of the waveform, and the autocorrelation of the data will
produce a sinc-like autocorrelation waveform that is localized to the values near the center
of the output of the autocorrelation. This is the diagonal region of the autocorrelation
represented as a matrix.

If we select this window in the autocorrelation for processing, then spiking decon filter
will be generated approximately correctly.

In supef the value of maxlag = is set to the width of the autocorrelation waveform,
which we must determine by taking the autocorrelation using suacor. (Remember that
a “lag” is just a time delay.)

For example, consider the fake.su data

$ suacor < fake.su ntout=101 | suxwigb perc=90.
Another possibility is to stack the autocorrelations

$ suacor < fake.su ntout=101
| sustack key=dt | suxgraph style=normal fl=-.

which yields a sinc-like waveform.
The choice of key=dt was to ensure that the traces were all stacked with respect
to a header field that does not change in the gather and the choice of f1=-.2 is so that

200

201

the peak of the autocorrelation is at zero lag. The choice of ntout=101 means that we
want 101 samples on the resulting traces. This number is chosen to be sufficiently large
to capture the side lobes of the wavelet that appears in the center of each of the resulting
traces.

This waveform is the autocorrelation waveform. For data that are dominated by
spikes, or are spectrally white, the autocorrelation waveform would also be a spike.

We pick the width of the autocorrelation waveform. In the case of our example, this
is between approximately 0.0667 and 0.1340 seconds, making the width of the autocorre-
lation waveform approximately .0673 seconds. We apply supef setting this value as the
value of maxlag

$ supef maxlag=.0673 < fake.su | suxwigb perc=99

The data are made more spike-like by the operation. Try different values of maxlag—=
to see what the effect of changing this parameter is.

Also you might want to view autocorrelation waveform of the deconvolved data to
see what happens

$ supef < fake.su maxlag=.0673
| suacor ntout=101 | suxwigb perc=90.
or
$ supef < fake.su maxlag=.0673
| suacor ntout=101 | sustack key=dt | suxgraph style=normal

The effect
We apply the same operations on CDP 265

$ suacor ntout=101 < gain.jon=1.cdp=265.su
| suxwigb perc=99

The autocorrelation waveform is a sinc-like function. We define the “width” of this
waveform to be the window of time just large enough to include the side lobes on each
side of the main lobe. If we measure the time from the beginning to the end of the
autocorrelation waveform, which is to say about .169 seconds to about .247 seconds see
that the width is about .078 seconds. Your values may differ.

This is the value of maxlag that we will set in supef

$ supef < gain.jon=1.cdp=265.su maxlag=.078 | suxwigb xcur=3

To see how well this has spiked the data, we may view the autocorrelation waveform with
suacor

$ supef < gain.jon=1.cdp=265.su maxlag=.078
| suacor ntout=101 | suxwigb perc=90

which should show that the autocorrelation waveform is now a spike. Again, we may
vary the value of maxlag= to see the effect of changing this parameter.

201

202

11.8.3 Multiple suppression by Wiener filtering—Gapped
prediction error filtering.

We now seek to eliminate multiples by prediction error filtering also known as predictive
deconvolution. Predictive decon relies on the minimum phase (aka minimum delay) as-
sumption and the notion that the data contain repetitions owing to the series of multiples
M.

One of the reasons that multiples are damaging to processing and hard to eliminate is
that multiples are not merely added to the data, they are convolved with the reflectivity
series R, which is in turn convolved with the wavelet W

D = WxMxR
N K

D, = ZMn—mZWz—kRk, (11.8.2)
m=0 k=0

which we could write as a cascaded matrix multiplications on to the vector R
D=MWR (11.8.3)

where both M and W matricies composed of shifted versions of the M and W series,
respectively. Not also, that there is a noise vector N that is added, as well

D=WxMxR+N (11.8.4)

which we have been quietly ignoring.

If we form the autocorrelation of the data D, the result will be the same as the
autocorrelation of the series of reverberations M convolved with the wavelet W. The
reflectivity series R is considered to be random because later values of reflectivity may not,
in general, be predicted from earlier values. (This ignores the possibility of transgressive
and regressive sequences in geology, which may be repetetive.) We may also consider the
noise N to be composed of the sum of a random and non-random part.

The autocorrelation of the reflectivity series will be assumed to not contribute to the
autocorrelation of the data. We call the matrix of shifted autocorrelations ® which will
be approximately

® = (MWRT'MWR
d = RRWTM"MWR (11.8.5)
® ~ WIMTMW

where

®o ¢ P2 Pna |
b1 o 1 .. Ppa
G2 O_1 Yo ... Pn-3
©— e e | (11.8.6)

[0y o e 01 G

202

203

Here each row is a shifted version of the autocorrelation of the full data D which is the
symmetric waveform ¢, 1y, ¢ (n—2), @—(n-3), -, P—2, P—1, G0, P1, P25 s P(n—3), P(n—2)> P(n—1)-

The character of the autocorrelation will be as follows. If the wavelet W is minimum
phase (aka minimum delay), the portion in the middle about the value ¢ will be a sinc-
like waveform consisting of a main lobe centered at ¢q, symmetric with just a couple
of side lobes, allowing us to estimate the autocorrelation of the wavelet W—hence our
use of the width of the autocorrelation waveform for maxlag= in supef for spiking
deconvolution.

The autocorrelation will contain repetitions owing to the autocorrelation of the mul-
tiples M with the reflectivity series. That repetition time will be related to the two-way
traveltime in the water column. If we apply spiking decon to our data, the autocorrelation
waveform will be a spike, and what remains will be repeating spikes.

Our autocorrelation will start repeating at some sample k, so we are going to predict
the repetitions in the autocorrelation (which correspond to reverberations in our data)
and then subtract them off. We must find F' given

bo o1 P2 . Pp fo Pk

¢—1 qb(] ¢1 oo ¢n—2 fl ¢k+1

¢—2 ¢—1 ¢O ¢n—3 f3 ¢m+2
[N SN B I A I T

Thus, we are finding a least-squares filter F' that will predict the repetitions in the
autocorrelation by using the earlier values of the autocorrelation. Hence the notion of
“predictive” decon. The repetitions start at sample k, so this is the delay of the filter.

We don’t want the repetitions, so the filter we apply to the data is formed by subtracting
our filter (delayed by k samples).

In our notation, the prediction error filter is given by 1—F = {1, 0,0, ..., 0, — fo, — f1, ---, — fmax }-
Here there are k£ — 1 zeros, which is the “gap” in the gapped decon. The “prediction
error” is the difference between the data and the predicted value from the Weiner filter.

11.8.4 Applying gapped decon in SU — supef

By selecting the appropriate combination of minlag= and maxlag= defining the Wiener
filter, we can eliminate repetitions in the data, such as those caused by multiples. This
is known as gapped predictive decon in the paralance of the geophysical community.

We begin by spiking our fake+water+pegleg.su which are our data with water-
bottom and pegleg multiples

$ supef < faketwater+pegleg.su maxlag=.0673 | suxwigb perc=99 xcur=2

We then view the autocorrelation of the data in a broader window choosing ntout=1024
samples in the output. The idea is to look for repetitions in the autocorrelation

203

204

$ supef < faketwatert+pegleg.su maxlag=.0673 |
suacor ntout=1024 | suxwigb perc=90

What we are looking for are repetitions in the autocorrelation. We know that the two-
way traveltime for the water speed is about .5 s, and we see stripes that are at about .51
s above and below the autocorrelation waveform spike. Also we notice that there is an
offset effect. Thus, we apply a moveout correction to flatten the data

$ sunmo vnmo=1500 smute=20 < faketwater+pegleg.su | supef maxlag=.0673 |
suacor ntout=1024 | suxwigb perc=90

where we have used smute = 20 in sunmo to turn off the stretch mute. Notice that the
result is sensitive to the value of vnmo. It might be that making vnmo = slightly bigger
gives a slightly flatter collection of spikes

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su | supef maxlag=.0673 |
suacor ntout=1024 | suxwigb perc=90

The repetition time of the signal is the value that is needed to define the “gap” in the
gapped decon. In this case the gap is .51 seconds. This value is our choice for minlag.
The maxlag will be the value of maxlag we used for spiking the data added to the value
of the gap, maxlag = maxlag for spiking + gap.

Finally, we finish by doing inverse NMO

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |
supef maxlag=.0673 |
supef minlag=.51 maxlag=.5773 |
sunmo invert=1 vnmo=1800 smute=20 | suxwigb perc=99 xcur=2

Here we have performed spiking decon and have followed this with a gapped decon.
It may be better to do the gapped decon only, which would be done via

$ sunmo vnmo=1800 smute=20 < faket+water+pegleg.su |
supef minlag=.51 maxlag=.5773 |
sunmo invert=1 vnmo=1800 smute=20 | suxwigb perc=99 xcur=2

where we note that the maxlag=.51 4+ .0673 is chosen as if we had performed spiking
decon. Again we have used smute = 20 to turn off the stretch mute in sunmo. The
value of minlag= must not exceed the value of the actual reverberation time,
but it may be less. The value of maxlag= again is not so sensitive.

Again the value of pnoise= may be adjusted to improve the result.

We may view effect on the multiples by comparing semblance panels

$ suvelan < fake+water+pegleg.su nv=150 dv=15 fv=1450 |

suximage d2=15 £2=1450 cmap=hsv2 bclip=.5 title="cdp 265" &
$ suvelan < pef.faketwater+pegleg.su nv=150 dv=15 fv=1450 |

suximage d2=15 £2=1450 cmap=hsv2 bclip=.3 title="PEF" &

204

205

The multiples with speeds near the water speed have been suppressed, as have some of
the multiples from the strong reflector near 2 sec and 2000 m/s. However, this is not as
clean as the radon transform filtered data.

We may repeat the process to eliminate other repetitions in the data, such as those
from pegleg multiples. As with radon domain filtering, we choose appropriate nmo
velocities to flatten the arrivals we choose to remove. You may want to try repeating the
last several steps using the data fake4+water+pegleg.su.

11.9 What (else) did predictive decon do to our
data?

The fact that we are applying an inverse filter to our data means that in some sense we
are making the output look “more like a bunch of spikes” or “more like a bunch of Dirac
delta functions”. Because we know that a spike contains all frequencies, the term spectral
whitening is applied to describe the effect of such filters in the frequency domain. This
bug/feature may be observed in your data by comparing the amplitude spectra

$ suspecfx < faket+water.su | suximage title="data before spiking decon"
$ suspecfx < pef.fake+water.su | suximage title="data after spiking decon"

On one hand, it may seem that the increased frequency content is a good thing. However,
can we really trust that those frequencies have been correctly added to the data? These
may be simply an artifact of the filter that causes more harm than good. Some spectral
whitening is desirable, but most should probably be suppressed by filtering. For example
we might consider simply applying a filter to the data as part of the processing

$ | sufilter £=0,2,60,70 |

where the values of the corner frequencies of the filter are chosen to reflect a reasonable
range of frequencies in the data that can be trusted. So finally, the processing sequence
for our fake data with waterbottom multiples is

$ sunmo vnmo=1800 smute=20 < faketwater+pegleg.su |
supef maxlag=.0673 |
supef minlag=.51 maxlag=.5773 |
sunmo invert=1 vnmo=1800 smute=20 |
sufilter £=0,2,60,70 | suxwigb perc=99 xcur=2

or, if we seek to do multiple-suppression only, without spiking decon

$ sunmo vnmo=1800 smute=20 < fake+water+pegleg.su |
supef minlag=.51 maxlag=.5773 |
sunmo invert=1 vnmo=1800 smute=20 |
sufilter £=0,2,60,70 | suxwigb perc=99 xcur=2

For the real data, some variation on this processing flow, in terms of the values of min-
lag= and maxlag= will exist. Indeed, these values are guaranteed to vary some across
the survey.

205

206

11.9.1 Deconvolution in the Radon domain

Another possibility is to apply the prediction error filtering in the radon domain. For
example, employing the linear 7 — p transform we forward radon transform the data,
apply the prediction error filtering

sunmo vnmo=1500 smute=20 < gain.jon=1.cdp=265.su |
suradon choose=0 igopt=3 pmin=-1500
pmax=1000 interoff=-262 offref=-3237 |
supef minlag=.15 maxlag=1.0 |
suradon choose=4 igopt=3 pmin=-1500 pmax=1000
interoff=-262 offref=-3237 |
sunmo vnmo=1500 invert=1 smute=20 > radonpef.su

The process will do a good job on simple water-bottom reverberations, but other multiples
will not be as well suppressed, unless these can be made exactly periodic in the radon
domain.

11.10 FX Decon

There is application of prediction error filtering in the frequency domain, called “fx
decon” that was created in the 1984 by L.L. Canales. This technique uses predictive
decon in the space-frequency domain to identify and eliminate random noise.

For example, consider the spectrally whitened version of fake.su

$ suwfft w0=0 wi=1 w2=0 < fake.su | suifft > white.fake.su
Applying sufxdecon to these data
$ sufxdecon < white.fake.su | suxwigb perc=99

Try this operation on different versions of CDP 265.
It may be best to reserve ‘FX decon” for the later stages of processing, after the stack.

11.11 Lab Activity #20: Wavelet shaping

Many papers written in the 1970s dealt with the issue of wavelet estimation. That is,
using statistical methods to determine the shape of the average wavelet throughout the
dataset, or in regions in a dataset. The motivation for this is to use deconvolution to
change the waveforms of the data to a new desired output waveform.

Currently in SU, there is no sophisticated wavelet estimation code as yet. The user
can get a crude estimate of the wavelet by selecting the waveform from a horizontal
portion of a reflector in the data. Knowing the trace number and the time window of
the wavelet, we may use suwind to capture this “average wavelet” via:

suwind key=tracl min=TRACE max=TRACE tmin=TMIN tmax=TMAX > wavelet.su

206

207

where TRACE, TMIN, and TMAX are replaced with the actual values of the trace
number, and minimum and maximum times that where the wavelet of choice is located.
Also, we can make a desired output waveform by using the program suwaveform

SUWAVEFORM - generate a seismic wavelet
suwaveform <stdin >stdout [optional parameters]

Required parameters:
one of the optional parameters listed below

Optional parameters:

type=akb wavelet type
akb: AKB wavelet defined by max frequency fpeak
berlage: Berlage wavelet
gauss: Gaussian wavelet defined by frequency fpeak

gaussd: Gaussian first derivative wavelet
rickerl: Ricker wavelet defined by frequency fpeak
ricker2: Ricker wavelet defined by half and period
spike: spike wavelet, shifted by time tspike

unit: unit wavelet, i.e. amplitude = 1 = const.
dt=0.004 time sampling interval in seconds
ns= if set, number of samples in output trace
fpeak=20.0 peak frequency of a Berlage, Ricker, or Gaussian,

For example
$ suwaveform > dfile.su type=rickerl fpeak=15

where dfile.su contains a Ricker wavelet with peak frequency fpeak of 15Hz. The
frequency content of the desired output waveform should approximately match the fre-
quency content of the input wavelet.

Given the wavelet (wavelet.su) and the desired output waveform (dfile.su) we may
use the wavelet shaping code, called sushape

SUSHAPE - Wiener shaping filter
sushape <stdin >stdout [optional parameters]
Required parameters:

w= vector of input wavelet to be shaped or ...
..or ...

207

208

wiile= ... file containing input wavelet in SU (SEGY trace) format

d= vector of desired output wavelet or ...

...or ...

dfile= ... file containing desired output wavelet in SU format
dt=tr.dt if tr.dt is not set in header, then dt is mandatory

Optional parameters:

nshape=trace length of shaping filter
pnoise=0.001 relative additive noise level
showshaper=0 =1 to show shaping filter

For example, our waveforms may be shaped via:
$ sushape dfile=dfile.su wfile=wavelet.su < data.su > shaped_data.su

The shaping filter works by effectively by performing the operation of deconvolving the
data to remove wavelet.su and the convolution of the resulting “spiked” data by the
desired output waveform dfile.su. The sushape program makes use of Wiener-Levinson
theory to perform this operation in the time domain.

Finding the wavelet and making target waveforms

A great deal of work has been put into “wavelet estimation” techniques in the explo-
ration seismic community. Ideally we should know the wavelet for each shot, and even
the wavelet as a function of angle from the shot. Here, we assume for simplicity that
waveforms chosen carefully off of the data, using suwind are sufficient for our purposes.

To construct the target waveform dfile.su we may use one of the wavelets generated
from the program suwaveform with either type=rickerl or type=ricker2 being the
best choices, although the Berlage waveform is not a bad choice, either. When con-
structing a target waveform, make sure that the frequency content of the desired output
waveform is roughly the same as that of the data, so that values not be “manufactured”
by the program.

11.12 Filling in missing shots

We have noted that in the Viking Graben Dataset, there are a number of missing shots.
These may be identified by viewing a ”shooting chart” via:

$ suchart < seismic.su keyl=sx key2=gx |
xgraph n=120120 linewidth=0
labell="sx" label2="gx" marksize=2 mark=8 &

208

209

By zooming in on the plot, we can see that there are gaps in the data between shots
located between sx= 5187 and 5262 meters, between 5387 and 5487 meters, between
14412 and 14512 meters, and between 22162 and 22262 meters. Because there is a 25
meter spacing between successive shot positions this means that shots at the following
locations are missing: 5212, 5237, 5412, 5437, 5462, 14437, 14462, 14487, 22187, 22212,
and 22237 meters.

Missing data is big issue in exploration seismology because holes in our data are a
problem for processing algorithms, such as most migration routines, that expect that
data are uniformly sampled and are “complete.”

One method that can be employed is to simply replace missing shots with nearest
neighbor shot gathers, or by the average of nearest neighbor shot gathers. For example
we could capture and average two nearest neighor shot gathers by windowing the data

capture 5187 and 5262
suwind key=sx min=5187 max=5262 < seismic.su > junkl.su

and then by sorting into offsets, much as we did when we made a supershot gather in a
previous section

sort and stack into an average shot gather
susort dt offset < junkl.su > junk2.su
sustack key=offset < junk2.su > averageb5187_5262.su

We then make approximations to the missing shots by setting the trace headers to the
values that are necessary so that these new shot gathers take the place of the missing
shots

make shot 5212
#
set sx,ep,nhs header fields fields compute gx from sx and offset
sushw key=sx,ep,nhs a=5212,180,0 < average5187_5262.su
| suchw keyl=gx key2=sx key3=offset a=0 b=1 c=1 > shotb5212.su

make shot 5237
set sx,ep,nhs header fields fields compute gx from sx and offset
sushw key=sx,ep,nhs a=5237,181,0 < averageb187_5262.su

| suchw keyl=gx key2=sx key3=offset a=0 b=1 c=1 > shotb5237.su

Similar commands would be applied for to create average shot gather approximations of
the other missing shots.

209

210

Finally, the original data and the new shot gathers are concatenated together to
produce a modified version of the shot gathers

concatenate, sort to shot gathers, reset cdp field.
cat shot22237.su shot22212.su shot22187.su shot14487.su
shot14462.su shot14437.su shot5462.su shot5437.su
shotb412.su shot5237.su shot5212.su seismic.su > seismicl.su

susort < seismicl.su sx offset > seismic2.su

The file seismic2.su still has one additional change to be made. That is to set the cdp
field of the headers.

We begin by setting the value of cdp to the midpoint value, multiplied by 10 as to
not lose accuracy by round off error. We have to do this, because the cdp header field
can be only integer valued

suchw keyl=cdp key2=sx key3=gx b=10 c¢=10 d=2 < seismic2.su |
suchw keyl=cdp key2=cdp key3=cdp a=-16060 b=1 c=0 |
suchw keyl=cdp key2=cdp key3=cdp a=0 b=1 c=0 d=125 > seismic3.su

The second line subtracts off 16060 so that the first cdp header field value is 125, which
is 10 times the midpoint spacing in meters. In the third line, we divide the values of cdp
by 125, which, upon inspecting the headers, causes the first cdp/ to have a value of 1,
and the last value to be 2142, which is what the original data had. New trace count is
121440 traces.

Finally, the data can be sorted into cdp’s

susort cdp offset < seismic3.su > seis_repaired.cdp.su

and all of the operations we have discussed so far can be applied to the new file seis_repaired.cdp.su.

11.13 Advanced gaining operations

Before gaining our data, we would like to remove the effect of the differing source
strengths, and receiver gains on our data. These effects tend to cause vertical strip-
ing in our data. Indeed, this section should probably appear in the section on gaining,
but as this requires some additional sorting of the data, we discuss the operation here.

We must use some estimate for source strength, but we also know that there are likely
variabilities due to the receiver gains, so a statistical approach is used. Here, we apply
RMS power balancing. The approach we use here is fast and simple, but it is not the
only approach that may be applied.

Alternatively, if we had an estimate of the waveform for each shot, and an estimate of
the receiver response for each receiver, we could apply signature deconvolution to create

210

211

a surface-consistent correction for these source and receiver characteristics, as well as the
individual variations in the response.

While the great pains are taken to make sources, such as airguns or vibrators repro-
duceable and to make receivers that all have the same response, failures in reproucibility
happen either because of unexpected behaviors of the instruments, or because of local
conditions in the source and receiver environments.

For the Viking Graben data, we can exploit the fact that the each hydrophone is at
a fixed distance to make these differences quantifiable.

11.13.1 Differing source strengths

We may study the source strength by looking at the rms power of each shot. We do this
by windowing the data to a single offset. For example we might consider looking at the
first arrival at a fixed offset, such as offset=-262 meters. Rather than look at the full
trace, we might consider looking at the maximum of the RMS value of the first reflected
arrival at -262 meters.

This would be done via:

$ suwind key=offset min=-262 max=-262 < shot_gathers.su
> seis_offset_m262.su
$ suwind tmin=.48 tmax=.56 < seis_offset_m262.su |
suxmax mode=rms label2="amplitude"
labell="energy point number" xlbeg=101
title="RMS amplitude comparisons at offset=-262 m" &

We first would want to remove source strength, by beginning with our data as shot
gathers. Here this is the file seismic.su before any other processing. There is a program
called susplit which will split the data out into separate files based on header field value
To make separate files of shots, we first move the data into a convenient location

$ mkdir Temp

$ mv seismic.su Temp

$ cd Temp

$ susplit key=ep close=1 < seismic.su

There are 1001 shots, so there will be 1001 files that begin with the word split. We may
loop over these, performing a gaining operation that balances the data by shot gather
panel. The gaining of choice is to divide by the RMS power of the data, which is the
square root of the sum of the squares of the seismic data values in all of the traces of a
given shot gather. In a shell script we run

rm pbal.shot.su
for i in ‘1ls split_x* ¢

sugain panel=1 pbal=1 < $i >> pbal.shot.su

211

212

amplitude

EP 100 1?0 200 250

1504 —

2004

250

3004

2504

400

4504

5004

550

GO0

enerqy point number

E50

00

704

Bo04

850

3004

9504

1000

RHMS amplitude comparizons at offzet=—262 m
212
Figure 11.6: RMS power of the first reflected arrival at offset=-262m

213

done

rm splitx*

The double redirect out >> says “append values”, so the file pbal.shot.su contains all
of the power balanced shots. We are free remove the separate shot files after the process
is complete via

rm split_x*

This is certainly crude. We might improve this by applying sunormalize with the
windowing option

11.13.2 Correcting for differing receiver gains

Similarly, we can take the resulting power balanced shot gathers and sort these into
recewer gathers via

$ susort gx offset < pbal.shot.su |

susplit key=gx close=1
The result now is a collection of files whose names begin in the word split each containing
a single receiver gather. As before, we run in a shell script the operations

rm pbal.rec.su
for i in ‘1ls split_x* ¢

do

sugain panel=1 pbal=1 < $i >> pbal.rec.su
done
rm splitx*

to yield the power balanced receiver gathers.
The final file pbal.rec.su of receiver gathers can be re-sorted into CDP gathers and
gained, and the other processing we have discussed already can begin

$ susort < pbal.rec.su cdp offset | sugain jon=1 > gain.jon=1.cdp.su

where here, we recognize that “gain” also includes power balancing for shot strength
and receiver gain. Again, we are free remove the separate shot files after the process is
complete via

$ rm split_x

Both of these operations are captured in the shell script Pbal located in /data/cwpscratch/Data5/.
This technique is, at best, approximate, and may indeed not generate much improve-
ment in the data. The best situation is if we had the source wavelet for each shot, and
an actual receiver response for each receiver.
There are many attempts in the industry to perform wavelet estimation and to es-
timate receiver response. Such responses could be used to perform a surface consistent
deconvolution.

213

214

11.14 Advanced deconvolution— Homomorphic
Wavelet Estimation and signature decon

One method of wavelet extraction that we can try is called homomorphic wavelet esti-
mation. The principle is simple. If the only thing that does not change in a collection of
seismic traces is the wavelet, then the average of the Fourier representations of the traces
would, by the law of large numbers, tend to the spectrum of the wavelet.

We can see why this is so by the following. If we consider the signal s(¢) to be the
convolution of the wavelet w(t) with the reflectivity series r(t), further convolved with
the multiple series m(t), with each having its own noise, we have

s(t) = w(t) xr(t) * m(t). (11.14.1)
In the frequency domain, the convolutions become multiplications
S(w) = W(w)R(w)M (w). (11.14.2)

To make matters simpler, we would represent the data by the natural logarithm of
the spectrum

M(S(w)) = In (Au(w)An(w) Ay (w)el@) Hor@tont)
= [In]A, ()] +In|A, ()] + In A, (w)] (11.14.3)
+i [P (W) + (W) + Pm(w)] .

Thus the natural log of the amplitude spectra can be averaged and the phases can be
averaged over a collection of traces, the result exponentiated, and the inverse transform
performed.

The amplitude spectra should all be similar to the source spectrum, with a loss of
higher frequencies due to anelastic attenuative loss. If the wavelet is the only thing
that does not change very much trace by trace, then sum over these should tend to the
log-amplitude spectrum and phase of the wavelet.

The result can be exponentiated and inverse Fourier transformed giving an estimate
of the wavelet for each shot.

Phase unwrapping

There is an added complication in that phase that is calculated by taking the arctangent
of of the ratio of the imaginary part over the real part of the Fourier transformed data
must be “unwrapped.” The arctangent function only returns the principal branch, which
means that the arctangent function only returns phase angles between —II and 7. There
are several strategies for doing unwrapping the phase. The trend in the phase is also
removed to aid in averaging the phase values.

The output wavelet is assumed to be minimum phase. As a last step we convert
the output wavelet to its minimum phase equivalent. This is done in what is called the

214

215

cepstral domain, which is the inverse Fourier transform of the resulting log frequency
domain representation. In SU the program suminphase performs this function.

The resulting wavelet may then be deconvolved from the data using sucddecon.

The shell script Signature_Decon located in Datab sorts the data into shot gathers,
splits the shot gathers into separate files, performs homomorphic wavelet extraction and
deconvolution with the extracted wavelet, and concatenates the result on $outfile.

The wavelet estimation seems to work best on the raw data or on the the muted raw
data that has been gained.

#! /bin/sh

estmiate source wavelet by shot and receiver response
and deconvolve input data

set —-x

infile=shot_gathers.su
outfile=shot_receiver_sigdecon_$infile

echo "Signature decon with homomorphic wavelet estimation "

Assumptions:

1) wavelet is constant within a shot gather

2) reflectivity and multiple series are random
3) wavelet is minimum phase

correcting for souce wavelet
remove output files

rm shot_$outfile

rm $outfile

rm all_shot_wavelets.su

rm all_receiver_responses.su

split the original data into shot gathers
split shot data

susort sx offset < $infile > shot_gathers.su
susplit < shot_gathers.su key=sx

loop over shot gather files
for i in ‘ls split_sx* ¢
do

215

216

stack real part of the complex log transform (loglAl)
suclogfft < $i | suamp mode=real | sustack key=dt > real.su

stack imaginary part of the complex log transform (phase)
suclogfft < $1i | suamp mode=imag | sustack key=dt > imag.su

combine real and imag and inverse clog transform
and output a minimum phase version of

suop2 real.su imag.su op=zipper | suiclogfft |
suminphase | suwind itmax=199 > wavelet_est.su

cat wavelet_est.su >> all_wavelets.su

deconvolve with sucddecon
sucddecon sufile=wavelet_est.su < $i >> shot_$outfile

done

rm split_sxx*

This shell script can be easily extended to the problem of removing the receiver
response, by re-sorting the resulting output into common receiver gathers, and performing
the same wavelet extraction and deconvolution, much as done in the Pbal script in the
previous section.

The term surface consistent deconvolution is often used as a label for deconvolutional
processes that correct for both source and receiver effects.

11.15 Muting NMO corrected data

The program sumute may be used to surgically remove undesirable noise on the CMP
gathers that occurs for times early than the water-bottom reflection. Because our
prospect has a roughly flat surface the time of the reflection of the water bottom is
at approximately time .48 seconds. In addition to the noise before the water-bottom
reflection, there are some unsuppressed multiples, or other arrivals on the far offsets that
are undesirable.

We may use predictive deconvolution to clean up those near offset traces, or we may
consider eliminating the near offset traces entirely with suwind before further processing.
Putting these together, after NMO we may insert the commands

| suwind key=offset min=-3237 max=-450 |
sumute key=offset tmute=.45, .45 xmute=-3237,-450 |

216

217

prior to the stack to clean up the image. The choice of nearest offset to include is a
matter of personal preference. The value of —450 is not necessarily the best value.

11.16 Ghost reflections

The waves that travel from the source to the water surface and then propagate down in
the model, as well as the reflection that travel from the subsurface, to the water surface
and to the receiver array interfere with the more direct reflections to produce what are
called ghosts. The issue of ghosting, and deghosting can be complicated.

Because the delay between the primary reflections and the ghost reflection is short,
the phenomenon reveals itself as a notch in the spectrum at the frequency where the peak
from the ghost reflection cancels the trough from the primary. Thus, from the source
and receiver depth, and the speed of sound in water, we can estimate this ghost notch as

v
water (11.16.1)
source or receiver

DN | —

f notch — n

where h is the depth to the source or receiver.

11.17 Swurface related multiple elimination

A modern approach to multiple elimination is the Surface Related Multiple Elimination
(SRME) method invented in 1991 by Erich Verschuur, then a Ph.d. student at Delft
University of Technology. The method is a data driven annihilation method that makes
assumptions about the structure of multiples based on an autoconvolution model of
multiples. Verschuur began with the observation that multiples could be made by the
convolution of a seismic trace with itself (suitably shifted) and reasoned that it should be
possible to use the data itself to model the multiples, and then use adaptive subtraction
to remove the multiples from the data.

11.17.1 The auto-convolution model of multiples

The SRME method operates on a very simple model of multiples. If we consider the
auto-convolution of data with itself, then such resulting autoconvolved data are the
same as multiples, assuming simple single layer reflection.

For example if we convolve the noise free version of the fake.su data with itself and
add this to the noise free fake data

$ suconv < fake_no_noise.su sufile=fake.su panel=1 > autoconv.su
$ susum autoconv.su fake_no_noise.su > faket+autoconv.su
$ suxwigb < faketautoconv.su title="autoconvolution multiples"

we see that the result is similar to what we would expect for data with multiples.

217

218

In theory, we could use the earliest arrivals on a seismic reflection profile to build a
model of the first multiples through autoconvolution, and then adaptively subtract these
out of the data. The demultipled portion of the data would then be autoconvolved to
generate a model of the second order bounces, which in turn would be subtracted. The
process of modeling followed by adaptive subtraction can then be repeated until the data
are completely cleaned of multiples, as best as the algorithm could handle this.

Both 2D and 3D versions of SRME have been implemented.

Unfortunately, we do not yet have an SRME code in the SU.

11.18 Homework Assignment #8, Due Thursday 5
Nov, before 9:00am and Tuesday 3 Nov 2015

This exercise is similar to problem #7 however you will be applying more processing
techniques.

e Start with the ungained and unmuted data.
e Mute and gain dataset.
e Apply one of the spectral methods to sharpen the waveform of the data.

e Use suwind to break the full dataset into blocks that are about 500 CDPs in size.
The number of blocks is up to you. For example, the last block was more than 500
CDPs, so you could split that one up. Or maybe you want to use bigger blocks.

e Perform the Radon-domain multiple suppression on each of these smaller blocks,
to do a better job of multiple suppression. It is more important to preserve the real
reflections than it is to try to suppress all multiples, at the expense of data. You
may have done all of this already in the previous assignment. Redo parts only if
feel that you need to improve the result.

e Concatenate the blocks together to form the full multiple-suppressed version of the
dataset. You can call this dataset
radon.gain.yourgainparameters.cdp.su

e Repeat exercise #5 on this multiple-suppressed dataset (except do not show near
and far offset stacks. Stack over all traces, and use your best stacking velocities.)
Save your NMO velocities in a file called, say radon_nmo_vel.par. For example,
if you used the CDPs at 250,750,1250,1750 to get your NMO velocities, then the
contents of the file would look something like:

cdp=250,750,1250,1750

tnmo=0,.,..,. .., 0,y u.,..
vnmo=1500,..,..,..,..,..,..

218

219

tnmo=0,.,..,..,..
vnmo=1500,..,..,..
tnmo=0,.,..,..,..,..
vnmo=1500,..,..,..,..
tnmo=0,.,..,..,..,..,..
vnmo=1500, ..,..,..,..,..

where the tnmo= vnmo= are those that you got for the respective CDPs. Note
that the number of tnmo= and vnmo= values per pair have to be the same,
but each pair may have a different number of values from other pairs.

The idea is to concatenate and then NMO-correct the data.

Use this radon_nmo _vel.par for performing the NMO correction before stacking.

$ sunmo par=radon_nmo_vel.par < radon.gain.yourgainparameters.cdp.su
| sustack > stack.su

Obviously, you cannot complete this assignment on time if you do not start working on
this immediately. Ideally, everyone will have a Radon multiple-suppressed version of the
full dataset
radon.gain.yourgainparameters.cdp.su ready for class on the due date so we can
proceed with fancier velocity analysis.

Other tips:

e Feel free to use at to run the jobs at night.

e Furthermore, you might consider regaining the data after you have done multiple
suppression.

e Who says that you need to stack all of your data? It may be that the far offsets
and the nearest near offsets could be omitted from your data, and make the dataset
a bit smaller. However, is it worth the loss of data? You decide.

11.18.1 How are we doing on multiple suppression and NMO
Stack?

The subset approach that is pursued in the Homework 7 and 8 suffers from a serious flaw.
While we have a set of stacking velocities for each block, we are not taking advantage of
the ability of our programs to interpolate these values across the section. We may see a
blocky appearance.

While performing this procedure in subsets makes it a bit quicker, this is for instruc-
tional purposes only. From now on, we work with the full dataset. We do not
break the data into blocks.

219

220

11.19 Concluding Remarks

Much of exploration seismic research conducted prior to the mid 1980s was focused on the
problem of seismic deconvolution and wavelet estimation. The CWP /SU:Seismic Unix
package was largely developed during a time right after this, when exploration seismic
research was focused on amplitude preserving depth migration, so consequently we have
a lot of migration related tools and a comparatively few deconvolution-related programs,
so deconvolutional methods are not yet well represented in the SU package.

Though we have not really done justice here to the broad topic of deconvolution and
the other spectral methods, we can see that the application of these techniques is more
involved than merely applying the operation. Considerable preconditioning of the data
is required to make the traces look more alike, so that the deconvolutional process may
remove the parts (such as multiples) that we don’t want.

Predictive decon really means that we use the first part of the data to predict the
repetitions in the latter part of the data, and to use those predictions to annihilate those
repetitions (multiples). For this to work the repetitions must closely match the initial
waveforms. Hence, making the amplitudes as uniform as possible is desireable for such
techniques to be applied.

In the modern world there is an increasing demand for amplitude information for the
extraction of amplitude versus angle (AVA) also known as amplitude versus offset (AVO)
information. Balancing away all of the amplitude variability in the data is not desirable,
so methods that preserve amplitudes and are data driven are preferred.

220

Chapter 12

Velocity Analysis on more CDP
gathers and Dip Move-Out

A shell script called Velan.radon is supplied in /data/cwpscratch/Datab. This is a
general purpose shell script for velocity analysis. The script Velan.radon is designed to
aid in the generation of velocities for Radon transform based mulitiple suppression, but
the NMO velocities picked with this script may also be used for stacking.

These shell script makes use of a number of programs that you have used already,
including suvelan, suwind, suximage, suxgraph, sunmo, suradon, and suxwigb as
well as some programs you have not used, such as unisam2, velconv, and smooth2.

The begining of this script gives you an idea of how to run it, and what parameters
you may adjust:

#! /bin/sh

Velocity analyses for the cmp gathers

Authors: Dave Hale, Jack K. Cohen, with modifications by John Stockwell
NOTE: Comment lines preceeding user input start with

#set -x

Set parameters
datadir=.

velpanel=gained_data_sorted_in_cdps.su # gained data sorted in cdps
vpicks=radon_nmo_vel.par # output file of vnmo= and tnmo= values

normpow=0 # see selfdoc for suvelan

slowness=0 # see selfdoc for suvelan

cdpfirst=1 # minimum cdp value in data

cdplast=2142 # maximum cdp value in data

cdpmin=132 # minimum cdp value used in velocity analysis
cdpmax=2110 # maximum cdp value used in velocity analysis
dcdp=512 # change in cdp for velocity scans

221

fold=120 # maximum number of traces per cdp gather
dxcdp=12.5 # distance between successive midpoints
in full data set
mix=0 # number of adjacent cdp panels on either side
of a given panel to mix

Set velocity sampling and band pass filters
nv=150 # number of velocities in scan

dv=15 # velocity sampling interval in scan
fv=1450.0 # first velocity in scan

nout=1500 # ns in data

Set interpolation type for velocity function plots
interpolation=mono # choices are linear, spline, akima, mono

set filter values for wiggle trace plots
£=1,5,70,80 # bandwidth of data to pass
amps=0,1,1,0 # don’t change

suximage information

wclip=0 # This number should be between O to .15 for real data
bclip=.3 # this number should be between .2 and .5

cmap=hsv2 # colormap

perc=97 # clip above perc percential in amplitude

xcur=1 # allow xcur trace xcursion in wiggle trace plots
curvecolor=black # color of stacking velocity picks curve

#average velocity
vaverage=2100 # this may be adjusted

radon transform parameters

dp=8 # increment in p in radon transform
pmin=-2000 # minimum value of p in radon transform
pmax=2000 # maximum value of p in radon transform
pmula=20 # t=tmax intercept of radon filter
pmulb=200 # t=0 intercept of radon filter
offref=-3237 # offset at maximum moveout
interoff=-262 # offset at minimum moveout

unisam parameters

222

sloth parameter: Interpolate as sloth=0 velocities, sloth=1 slownesses,

sloth=3 sloths

222

223

sloth=1

smoothing
smooth=1
r=3.5 # values should probably not exceed 5 or 6

preprocess with predictive decon? decon=0 no , decon=1 yes

minlag= width of autocorellation waveform, maxlag= repetition time + minlag
decon=1

minlag=.2

maxlag=.7

######## You shouldn’t have to change anything below this line ##########H#

The idea of the script is to take the full dataset, window it into specific CDPs,
assuming an increment in CDP, allow the user to pick a semblance panel and view the
resulting NMO corrected version of the data panel. If the velocity picks are to the liking
of the user, then the script proceeds to the next CDP panel. The end product is a
collection of tnmo= and vnmo= values, in a file called nmo_vel.par for Velan and
radon_nmo_vel.par for Velan.radon. The distinction is made, because the velocities
used for Radon transform based multiple suppression may not be quite the same as those
used for stacking.

If we go in 512 cdp increments across the data, we will sample the velocity approxi-
mately 4 times (depending on the values of cdpmin= and and cdpmax=) across the
section. This will give a representative collection of velocities that will be more repesen-
tative of the actual velocity change across the profile. The Velan script runs a number
of SU programs to make an estimate of the velocity profile in time, and when you are
finished doing velocity analysis, will generate uniformly sampled velocity profiles of both
RMS and interval velocities. These are “quick and dirty” representations of the velocity
field, which tend to be bad, because they have spurious errors due to errors in interpo-
lation and in conversion from RMS to interval velocities. These can be used as a guide
for the construction of a background velocity model.

This procedure may be repeated, changing, for example, the value of the cdp incre-
ment dedp=256, dcdp=128, or dcdp=64 to obtain increasingly dense coverage in
RMS velocities. The idea is to go in increments of powers of 2 so that you only have to
do every other CDP. Or, the user may start with a different value than 512 and bisect
that.

Output from Velan.radon

If you look carefully in Velan.radon you will see that there are a number of output files.
These include the (tnmo,vnmo) time and velocity pairs that is the result of semblance
picking. However along the way there are a number of generated files that are useful for
both diagnostics and for further processing. These are:

223

224

vpicks=radon_nmo_vel.par # output file of vnmo= and tnmo= values

binary files output

vrmst=vrmst.bin # VRMS(t) interpolated rms velocities
vintt=vintt.bin # VINT(t,x) as picked

vinttav=vinttav.bin # average VINT(t) of VINT(t,x)
vrmstav=vrmstav.bin # average VRMS(t) of VRMS(t,x)
vinttuni=vinttuni.bin # interploated Vint(t,x)
vintzx=vintzx.bin # VINT(z,x)interpolated interval velocities
vintzav=vintzav.bin # average VINT(z) of VINT(z,x)
vintxz=vintxz.bin # VINT(x,z)interpolated interval velocities

We may view the resulting velocity files by running the shell script Xvelocity, which
will show RMS, average RMS, interpolated RMS, as well as average interval velocities.
These automatically generated velocity files tend to be lumpy, so they are not really
suitable to be used for migration as is, but may provide important information for con-
structing velocity models later on.

The file radon_nmo_vel.par has contents that are similar to

cdp=128,192,256,320,384,448,512,576,640,704,768,832,896,960,1024,1088
tnmo=0.0,0.636979,1.15987,1.31199,1.91094,2.9187
vnmo=1500,1557.09,1734.03,1822.5,2041.34,2488.34
tnmo=0.0,0.579936,0.893672,1.35002,1.8539,2.41482,2.7951
vnmo=1500,1561.75,1659.53,1831.81,2032.03,2446.44,2693.22
tnmo=0.0,0.598951,0.922194,1.35952,1.50213,1.89192,2.90919
vnmo=1500,1557.09,1678.16,1794.56,1855.09,2027.38,2562.84
tnmo=0.0,0.684515,1.29297,1.87291,2.3958
vnmo=1496.56,1571.06,1734.03,1971.5,2404.53
tnmo=0.0,0.751065,0.998251,1.18839,1.40706,1.81587,2.47186
vnmo=1500,1608.31,1720.06,1808.53,1859.75,2008.75,2399.88
tnmo=0.0,0.713037,0.988744,1.32149,1.65424,1.90143,2.89017
vnmo=1500.25,1626.94,1696.78,1817.84,1887.69,2050.66,2623.38
tnmo=0.0,0.665501,1.01727,1.38804,1.70178,2.02502,2.93771
vnmo=1500,1594.34,1724.72,1850.44,1915.62,2157.75,2576.81
tnmo=0.0,0.636979,1.04579,1.41657,1.68277,1.87291,2.32925,3.53666
vnmo=1500,1575.72,1771.28,1817.84,1887.69,2069.28,2278.81,2777.03
tnmo=0.0,0.465851,0.789094,1.09332,1.4641,1.90143,2.43383
vnmo=1500,1538.47,1631.59,1780.59,1850.44,2022.72,2330.03

224

225

tnmo=0.0,0.675008,0.865151,1.20741,1.48312,1.92045,2.5289,3.13736
vnmo=1500,1585.03,1710.75,1771.28,1831.81,2041.34,2460.41,2823.59
tnmo=0.0,0.779587,1.14086,1.92045,2.2532,2.63348,3.3275
vnmo=1500,1640.91,1743.34,2027.38,2222.94,2371.94,2860.84
tnmo=0.0,0.646486,0.846137,1.15037,1.51164,1.82537,2.49087,2.98525
vnmo=1500,1575.72,1687.47,1817.84,1938.91,1980.81,2446.44,2735.12
tnmo=0.0,0.655994,0.874658,1.17889,1.57819,1.89192,2.47186
vnmo=1500,1575.72,1715.41,1817.84,1943.56,2008.75,2520.94
tnmo=0.0,0.598951,0.874658,1.17889,1.556917,1.9965,2.50038, 3.80286
vnmo=1500,15685.03,1710.75,1827.16,1948.22,2078.59,2395.22,3135.56
tnmo=0.0,0.684515,0.931701,1.25494,1.56868,1.9965,2.1296,2.63348
vnmo=1500,1580.38,1738.69,1827.16,1920.28,2064.62,2153.09,2413.84
tnmo=0.0,0.789094,1.26445,1.64474,2.2532,3.00426
vnmo=1500,1654.88,1836.47,1971.5,2199.66,2683.91

Here, some hand editing has been applied.

12.0.1 Applying migration

We then can apply any of the post stack migration algorithms that we have discussed
earlier in the text.

Any of these corresponding tnmo=..,..,.. vnmo=..,..,... pair sets may be copied
from radon_nmo_vel.par a new file, say stolt.par and used as the “par” file as input
for sustolt. Select only one tnmo=..,..,.. vhmo=..,..,.., change tnmo= and vnmo=

to tmig= and vmig=, and you are ready to run sustolt.
For example

$ sustolt par=stoltmig.par cdpmin=1 cdpmax=2142 dxcdp=12.5
< stack.nmo.radon.gain.jon=1.su
> stolt.stack.nmo.radon.gain. jon=1.su

The file vintt.bin is an approximate interval velocity as a function of time v;,,(t), and
thus may be used as the vfile in sugazmig, sumigps, or suttoz. For example

$ sugazmig < stack.nmo.radon.gain.jon=1.su vfile=vintt.bin dx=12.5
> gazmig.stack.nmo.radon.gain. jon=1.su
$ sumigps < stack.nmo.radon.gain.jon=1.su vfile=vintt.bin dx=12.5
> migps.stack.nmo.radon.gain. jon=1.su
$ suttoz vfile=vintt.bin nz=1500 < stolt.stack.nmo.radon.gain.jon=1.su
> depth.stolt.stack.nmo.radon.gain. jon=1.su

Warning! At best these “automated” velocities are for testing purposes only!
Similarly, there is file vintzav.bin that may be used with the depth migration programs.
Again, there tend to be systematic errors between stacking derived interval velocities and
true interval velocities, so these should be used for “quick looks” only.

225

226

12.0.2 Homework #9 - Velocity analysis for stack, Due Thurs
12 Nov 2015, before 9:00am and Tuesday 10 November
2015. (This assignment is paired with Homework #10
in the next chapter, so be aware of this.)

e Perform velocity analysis on the multiple-suppressed data using Velan.radon.
These stacking velocities, with corresponding cdp values will be in a file called
radon_nmo_vel.par. Note that if you have good stacking velocities from previous
assignments, please feel free to include this in your radon_nmo_vel.par file. Feel
free also to hand edit these velocities as you see fit.

e Apply NMO and Stack, using

$ sunmo par=radon_nmo_vel.par < radon.gain.jon=1.cdp.su |
sustack > stack.nmo.radon.gain.jon=1.su

Again, the file names you use should be the names of your corresponding files.

e Discuss the degree of improvement over the image quality given these better NMO
velocities.

e Now perform a Stolt migration of your multiple-suppressed, NMO-corrected, and
stacked data. Because Stolt migration uses RMS, which is to say NMO (stacking)
velocities, take one of the tnmo= and vnmo= pairs from your radon_nmo_vel.par
file as your tmig= and vmig= values. Or make up what you view as a represen-
tative or average set of tmig= and vmig= values for sustolt.

e Use suintvel to convert your RMS velocities into interval velocities. Using dz=3
nz=1500 with these velocities, use suttoz to make an approximate depth section
out of your Stolt-migrated image. To do this you may use the shell script RM-
StoINT located in /data/cwpscratch/Datab. The resulting suttoz.par file may
be used for this. For example

$ suttoz par=suttoz.par dz=3 nz=1500 < stolt.su > stolt.depth.su

(We performed some of these operations in the early part of the semester. You may
consult the earlier chapters of the notes for details. Note, also that there are shell
script examples in Datab.)

e Show your Stolt-time section and your Stolt-depth section and list your velocity-
time pairs. Don’t be afraid to use small clip= values to accentuate weaker arrivals
that you see in the section.

e Discuss what you see.

226

227

Additional tips

For students who wish to redo their multiple-suppression, please make use of the shell
script Velan.radon located in /data/cwpscratch/Datab. This shell script is a version
of the Velan script set up to allow you to make picks explicitly for multiple suppression.
You may also want to apply predictive deconvolution to suppress the near-offset multiples
before applying Velan.radon, and Radon.final.

The dz=3 and nz=1500 in suttoz is the source of the 4500 you see for the maximum
depth on your depth section.. With d1=3 in the headers on the output to suximage
we are showing the data to a depth of 4500 meters.

The question for the processor is how much of the output to show.

You may try different values of dz= and nz= to see what happens to your depth-
stretched image.

12.1 Other velocity files

There are several velocity files that are generated by the Velan script. These velocity
files are provided only as a guide for later velocity model building.

The file vintzx.bin is a very approximate v;,;(z,), but likely contains irregularities
that would not make this the best velocity file to use for migration, though it is in the
correct format to be used as the input vfile in sumiggbzo, or for the input velocity file
for rayt2d, which generates the traveltime tables for sukdmig2d. Similarly, while the
file vintxz.bin is in the correct format to be used as the input for sumigfd, sumigffd,
sumigsplit, or sumigpspi, it too will likely be too “lumpy” to give a good result.

We can however use these estimated velocities for some interval velocity information
when we build velocity models by horizon picking.

12.1.1 Velocity analysis with constant velocity (CV) stacks

We have used a method of semblance picking to estimate the stacking velocities. This
is an estimate, but it is not the only way to get the stacking velocities. An alternate
method is the constant velocity stack (CVS).

In /data/cwpscratch/Datab are two shell scriptsp MakeCV SstackMovie

#! /bin/sh

data=multiple_suppressed_gained_data.su
movie=stackmovie.su

fvel=1500

dvel=10
vmax=3000

227

228

vel=$fvel
rm $movie

while ["$vel" -1t $vmax]
do

echo $vel
sunmo tnmo=0.0 vnmo=$vel < $data |

sustack >> $movie

vel=‘expr $vel + $dvel’

done

suxmovie < $movie perc=98 n1=1500 n2=2142 loop=1 sleep=5 title="$g" fframe=$fvel dfram

exit O

and ViewStackMovie

#! /bin/sh
movie=stackmovie.su

fvel=1500
dvel=10

suxmovie < $movie perc=99 d1=.004 n1=1500 n2=2142 sleep=10000 loop=1 title="vnmo=$fvel

exit O

The idea of CVS is to perform constant velocity NMO on the data and stack it,
repeating for a large range of velocities. Here, this idea is implemented by sweeping
through stacking velocities starting with vnmo=1500 in increments of 10 m/s. The
data are NMO corrected and then stacked. Each stacked section becomes a frame in a
movie. In the title line of the movie, the stacking velocity is expressed as vhmo=1500
+ devel*frame number.

It takes about 20 minutes on a modern multi-core PC to generate the stackmovie.su

228

229

12.2 Dip Moveout (DMO)

Dip moveout is a partial migration that will convert NMO corrected prestack data to more
closely approximate true zero offset data. In the original formulation of dip moveout by
Dave Hale, the operation is applied to common offset data that have been NMO corrected.
The program sudmofk can be used to perform dip moveout on our NMO corrected data.
Hale’s method was not designed to be amplitude preserving. More modern applica-
tions of this type of data transformation that preserve amplitude have been developed.
Two of these general transformations are called transformation to zero offset TZO or
magration to zero offset MZO. As the names suggest data are tranformed through a
migration-like operation to synthetic zero-offset data. The motivation for developing
such operations follow from the computation cost of doing full prestack migrations. Al-
ternately, these techniques can be applied as velocity analysis techniques. Indeed, NMO
or NMO followed by DMO are really first approaches to transformation to zero offset.

12.2.1 Implementing DMO

Note, you need storage space for one or more copies of the full dataset if you want to try
this. For example, we may NMO correct the data via

$ sunmo par=nmo_vel.par < radon.gain.jon=1.cdp.su > nmo.radon.gain.jon=1.cdp.su
$ susort offset gx < nmo.radon.gain.jon=1.cdp.su > nmo.radon.gain.jon=1.co.su

where it is important to note that it is not a good idea to try to use pipes with susort.
The .co. in the extension name indicates that these data are now in common offset
gathers. We may then perform dip moveout processing with sudmofk. This program
requires an average set of tdmo=..,..,.. vdmo=..,..,.. pairs, which may are an
average set of times and velocities taken from nmo_vel.par, and which are copied into
a file named, say, dmofk.par

$ sudmofk par=dmofk.par cdpmin=1 cdpmax=2142 dxcdp=12.5 noffmix=7
< nmo.radon.gain.jon=1.co.su
> dmofk.nmo.radon.gain. jon=1.co.su

Here we noffmix=7 is chosen for this example. You may need to experiment with
this parameter on your data. The entries in dmofk.par must be named tdmo= and
vdmo= for sudmofk to be able to see them. The DMO process may take some time
to complete time to complete.

After the process has finished, you will need to resort your data back into CMP
gathers via:

susort cdp offset < dmofk.nmo.radon.gain.jon=1.co.su
> dmofk.nmo.radon.gain.jon=1.cdp.su

229

230

These new data may then be stacked and migrated. Again, you must have sufficient
storage capacity to save a couple of copies of the full dataset.

We expect improvement of the stack with DMO only in areas where dips are suffi-
ciently large that the NMO approximation fails to completely flatten the data. If the
input data are reflections over a generally flat, or low dip geology, then we don’t expect
to gain much by performing this operation.

12.3 Concluding Remarks

The notion of NMO followed by DMO as a way of building equivalent zero-offset datasets
naturally let to the notion of “transformation to zero offset (TZO)” and “migration to
zero offset (MZO)”. The basic notion of TZO and MZO is the following.

Suppose that you could do a perfect amplitude-preserving prestack depth migration
of data with offset. Then the result would be a representation of the earth—a geologic
model with bandlimited delta functions describing the reflectors. Then suppose we did
a remodeling from that representation to yield zero-offset data. The cascade of these
processes would be a “migration followed by remodeling” to the desired zero-offset traces.
In fact, you could remodel to any type of data.

But if you could do this, why bother? With all of those integrals it would be horribly
expensive in computer time? The answer is that a number of the integrals in the cascade
of migration-remodeling can be done approximately, using asymptotic methods, so that
the resulting algorithm looks like a migration algorithm, but migrates the data not to
the earth model, but to approximate zero-offset data. These data could then be stacked
and then migrated with a conventional migration program.

One motivation for doing this is to create a more advanced type of velocity analysis.
The usual NMO—DMO-—STACK procedure is only approximate for real data. The TZO
methods work better, though they are more expensive. In fact, there are a number of
forms of “migration velocity analysis” that make use of the ideas stated here. The other
motivation was to apply DMO as a substitute for full 3D depth migration, back when
computer speed and storage was more limited.

230

Chapter 13

Velocity models and horizon picking

One seldom uses velocity models derived directly from velocity analysis, though this is
possible. What is more common is to use a preliminary depth-section seismic image
combined with an estimate of interval velocities to construct a background wavespeed
profile that is used for either poststack or prestack depth migration.

For example, we may perform Stolt migration and convert this to a depth section
with suttoz to obtain first approximation of the migrated image

$ sustolt par=stolt.par cdpmin=1 cdpmax=2142 dxcdp=12.5
< stack.nmo.radon.gain.jon=1.su
> stolt.seis.su
$ suttoz par=suttoz.par nz=1500 < stolt.seis.su > stolt.depth.seis.su

(Note. Do not call this a “depth migration”. It is a depth section derived from a time
migration.)
The file suttoz.par may be made by running shell script RMStoINT, which employs

suintvel to do the interval velocity conversion. This script is provided in /data/cwpscratch/Datab.

The shell script produces as its output the file suttoz.par. The contents of this simple
shell script are

#! /bin/sh

convert a single RMS velocity to Interval velocity.
put your values of tnmo= and vnmo= here.

tnmo=

vnmo=

#output file
outfile=suttoz.par

suintvel tO=$tnmo vs=$vnmo outpar=$outfile
echo t=$tnmo >> $outfile

231

232

echo "use v= and t= values for suttoz "
echo " result output in $outfile"

exit O

The entries for vnmo= and tnmo= are the same values that you used for vmig= and
tmig= in stolt.par.

13.1 Horizon picking and smooth model building

From the contour map of vintzx.bin that we view with Xvelocity, one of the other
velocity plots that is output by Velan, or from independent well log information we may
be able to get an idea of a reasonable velocity trend that will be appropriate for migration.
If you know the stratigraphy of an area, reasonable velocities estimates for given rock
types provide this type of information. Again, simple is better than complicated, and
fewer depth horizons (no more than 4) are better than more.

We then may use the script Horizon to pick depth horizons on the depth-migrated
image. The shell script uses a similar blind picking technique as is used in Velan and
prompts the user for velocities, as well as the space rate of change of velocity (these
should be numbers on the order of dvdz=.1 and dvdx=.001 or dvdx=-.001 where
the units are (velocity units per meter).

The Horizon script is interactive and produces several output files. Two of these are
unif2.ascii and unif2.par. These files is used by the shell script Unif2.sh to build a
smoothed velocity file. The files produced by Horizon may be hand edited and Unif2
run again to produce an updated set of velocity files.

The contents of Unif2.sh are

#! /bin/sh
#set —-x

set parameters here

method=mono # interpolation method

nz=1500

nx=2136

pickedvalues=junkl.picks # this is the output of Horizon

cp junkl.picks temp.ascii

smoothint2 < temp.ascii r1=100 ninf=$ninf > unif2.ascii

232

233

unif2 < unif2.ascii par=unif2.par |
smooth2 n1=$nz n2=%$nx r1=50 r2=50 > junk.bin

cp junk.bin unewvelzx.bin
transp nl1=%$nz < unewvelzx.bin > unewvelxz.bin
exit O

The value of nx= is the number of CDPs in the stacked data. The user may set the
values of r1= and r2= to higher or lower values to control the level of smoothing.

The output velocity files are unewvelzx.bin and unewvelxz.bin, which may then
be used for migration. time

13.2 Migration velocity tests

Likely you will not get the correct migration velocities on the first iteration of the velocity
modeling process. The shell script Gbmig

#! /bin/sh
Gaussian Beam

#set —-x

use a v(z,x) velocity profile here
viile=unewvelzx.bin

vary the values of dz and nz as a test before running the full model
sumiggbzo < stack.dmo.nmo.myradon.gain.jon=1.su dx=12.5 dz=3 nz=1500 \
verbose=1 vfile=$vfile > gb.seismic.su

applies Gaussian-beam migration to the stacked data using the velocity file unewvelzx.bin.
This migration result may be viewed with suximage via

suximage < gb.seismic.su perc=99 legend=1 d1=3 d2=12.5 &

and the errors in migration velocity may be seen as either “frowns,” indicating under-
migration or “smiles” indicating over-migration of the data. The user may hand edit the
file unif2.par, increasing or decreasing the velocities in response to the respective smiles
or frowns. The user then runs Unif2 again, and re-runs the migration. This process is
repeated until the image has neither smiles nor frowns.

233

234

13.2.1 Homework #10 - Build a velocity model and perform
Gaussian Beam Migration, Due 12 Nov 2015 for both
sections.

Use the methods outlined in this chapter to build a velocity model and perform Gaussian
beam migration using that model.

e Use the RMStoINT and Suttoz shell scripts to stretch the Stolt migrated version
of your data from Homework #9 into a depth section.

e Use this depth section as input to the Horizon script and build a velocity model by
picking several horizons in the data. Assign interval velocities based on the average
interval velocities that are shown when you run Xvelocity

e Run the Unif2.sh script to generate the smoothed velocity files unewvelxz.bin
and unewvelzx.bin.

e Use the unewvelzx.bin file and your stacked data in the script Gbmig to perform
Gaussian beam migration on these data.

13.3 Concluding remarks

Seismic data and any other auxilliary data are combined in a step that involves the intelli-
gence of the processor to build better background velocity profiles for further migrations,
and for modeling.

We should not expect that this process can be made totally automatic. Indeed, some
experimentation will show that it is quite easy for iterations of picking and migrating to
yield a diverging series of modifications, that would ultimately result in a terrible and
unrealistic velocity profile.

In the modern world new techniques such as full waveform inversion provide an ap-
proach that yields estimates of velocities. The preferred method of migration is reverse
time migration (RTM), which is a prestack depth migration method.

234

Chapter 14

Prestack Migration

Owing to advances in computer technology it is now possible to perform prestack migra-
tion. The motivation for doing this is that information regarding the angular dependence
of the reflectivity is preserved in prestack methods, but is not preserved in poststack mi-
gration. Having such information can give clues about the material properties at depth
that are helpful in determining porosity and permeability as an aid in reservior charac-
terization.

Furthermore, prestack migration may be used as a step in migration velocity analysis.
If the output is in the form of image gathers which is to say migrated CMP gathers, then
analysis of the curvature of the arrivals in the image gathers can be used as a guide for
updating the wavespeed profile.

Finally, prestack migration is preferable if there is large vertical relief in subsurface
structures. Data which are largely flat do not benefit from prestack migration.

The cost of prestack migrating a single CMP gather is comparable to migrating the
entire poststack profile, so the computer costs increase correspondingly.

14.1 Prestack Stolt migration

The program sustolt may be used to perform prestack time migration by first sorting
the multiple-suppressed, gained and NMO corrected data into common-offset gathers and
then applying

$ sustolt par=stolt.par cdpmin=1 cdpmax=2142 dxcdp=12.5
< mnmo.radon.gain.jon=1.co.su > prestack.stolt.nmo.radon.gain. jon=1.su

This takes about an hour to complete on a relatively fast PC. The result can be sorted
into image gathers, which is to say “migrated CMP gathers.” The motivation to do
such a thing may be velocity analysis, but unfortunately, using sustolt we can only have
a Upms(t) profile.

235

236

14.2 Prestack Kirchoff time migration

It is possible to perform Kirchhoff time migration using an algorithm based on the so-
called double square root operator expressed as the program suktmig2d

SUKTMIG2D - prestack time migration of a common-offset
section with the double-square root (DSR) operator

suktmig2d < infile vfile= [parameters] > outfile

Required Parameters:

vfile= rms velocity file (units/s) v(t,x) as a function
of time

dx= distance (units) between consecutive traces

Optional parameters:

fcdpdata=tr.cdp first cdp in data

firstcdp=fcdpdata first cdp number in velocity file
lastcdp=from header last cdp number in velocity file
dcdp=from header number of cdps between consecutive traces
angmax=40 maximum aperture angle for migration (degrees)
hoffset=.5*tr.offset half offset (m)

nfc=16 number of Fourier-coefficients to approximate
low-pass

filters. The larger nfc the narrower the filter

--More--

The shell script Suktmig2d is provided to aid in the implementation of this code.

#! /bin/sh

#

viile=vel_nmo.bin # rms velocity as a function of cdp and time
dx=25 # spacing between receivers

indata=radon_mute_filtered_repaired_co.su
outdata=ktmig.su

rm ktmig.su

split the data into a bunch of common offset gaters
susplit < $indata key=offset

236

237

loop over shot gather files
for i in ‘ls split_x ¢

do

suktmig2d vfile=$vfile dx=$dx < $i >> $outdata
done

clean up

remove shot split files

rm splitx*

The input data, not NMO corrected, are sorted into shot gathers, with missing gathers
replaced by the method discussed in Chapter 11. The input velocity file consists of a
smooth model in RMS velocities, as would be produced by sunmo with the voutfile=
option set.

The shell uses susplit to break the data into seprate shot files, which are then mi-
grated individually. The resulting migrated shots are contcatenated to the file ktmig.su.
This file may be sorted into CDP gathers. These migrated CDP gathers are called image
gathers.

This takes about 7 hour to run, so this is practical for project assignments.

14.3 Prestack Depth Migration

It is common for prestack depth migration algoritms to be written with the assumption
that the data are not gained. Prestack depth migration is a wave-equation based process,
so the wave equation automatically takes care of the effect of geometrical spreading. The
data also need to be in the form of shot gathers.

To undo geometrical spreading and resort the data into shot gathers

$ susort sx offset < myradon.gain.jon=1.cdp.su > junkl.su
sugain tpow=-1 < junkl.su > myradon.shot.su

Or better yet, perform radon multiple suppression on the ungained, but muted data.

14.3.1 Pre-stack Kirchhoff Depth migration

The program sukdmig2d may be used to perform prestack depth migration. The pro-
gram rayt2d is used to construct a traveltime table for the Kirchhoff migration algorithm.
The shell script Rayt2d.large is provided for this purpose.

237

238

#! /bin/sh

rayt2d vfile=unewvelzx.bin \
dt=.004 \

nt=1500 \

fz=0 nz=1500 dz=3 \

fx=0 nx=2142 dx=25 ek=0 \
fa=-80 na=80 \

nxs=1012 fxs=3237 dxs=25 ms=1 \
tfile=tfile.unewvelzx

exit O
\end{verbatime}

The script {\em Sukdmig2d\/} is provided
to run the acut

\begin{verbatim}
#! /bin/sh

rayt2d vfile=unewvelzx.bin \
dt=.004 \

nt=1500 \

fz=0 nz=1500 dz=3 \

fx=0 nx=2142 dx=25 ek=0 \
fa=-80 na=80 \

nxs=1012 fxs=3237 dxs=25 ms=1 \
tfile=tfile.unewvelzx

exit O

The program requires a lot of ram. It will not run on all systems.

14.3.2 Pre-stack Fourier Finite difference depth migration
Given a good background velocity profile unewvelxz.bin the script Prestackffd.

#! /bin/sh

nxo=2142
nxshot=1012

238

239

nz=1500

dz=3

dx=12.5

viile=unewvelxz.bin

fmax=90
data=radon_mute_filtered_repaired_shot.su

susort sx offset < $data > data.shot.su

sumigpreffd < data.shot.su nxo=%$nxo nxshot=$nxshot nz=$nz dz=$dz dx=$dx fmax=$fmax vfi.

exit O

This script can be modified and adapted to run sumigprefd, sumigprepspi, and sum-
igpresp.
Each take several days to a week to run on the Viking Graben data.

239

